Evaluation and comparison net assets value of joint investment funds using support machine models versus statistical models - A case study from FEAS member countries
محل انتشار: مجله مالی ایران، دوره: 7، شماره: 4
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 113
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFIFSA-7-4_006
تاریخ نمایه سازی: 24 آذر 1402
چکیده مقاله:
Today, choosing the suitable model for determining the portfolio of investment in financial assets is one of the critical issues of the attention of analysts and capital market activists, and investing in a portfolio consisting of mutual investment funds is the same. With this statement, the purpose of the article is to evaluate and compare the net assets value (return) of the Federation of Asian and European Stock Exchanges (FEAS) member countries by using support machine models in comparison with statistical models. The statistical and sample population included the data of ۳۹ selected traded funds and FEAS members from ۱۲ selected countries (including Iran) between ۲۰۱۴ and ۲۰۲۱. The data related to the mentioned funds were classified and analyzed using spss-modeler, rapid miner, and Weka software. They were tested with ۲۴ support machine methods and ۱۱ statistical methods, and the results showed that the prediction accuracy of statistical models is lower than that of support machine models. The Mann-Whitney test was used to determine the significance of this difference. Also, the results show that at the ۹۵% confidence level, it can be claimed that the prediction accuracy of machine learning models is higher than statistical models. The average rating of machine learning models was (۲۰.۸۶) much higher than statistical models (۱۰.۸۵).
کلیدواژه ها:
نویسندگان
Leila Nateghian
Ph.D. Candidate, Department of Accounting, Urmia Branch, Islamic Azad University, Urmia, Iran.
Saeid Jabbarzadeh Kangarlouei
Associate Prof., Department of Accounting, Urmia Branch, Islamic Azad University, Urmia, Iran.
Jamal Bahri Sales
Associate Prof., Department of Accounting, Urmia Branch, Islamic Azad University, Urmia, Iran.
Parviz Piri
Associate Prof., Department of Accounting, Urmia University, Urmia, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :