Enhancing Fault Detection in Image Analysis: A Combined Wavelet-Fourier Technique for Advancing Manufacturing Quality Control

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 166

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-37-2_014

تاریخ نمایه سازی: 15 آذر 1402

چکیده مقاله:

This study focuses on utilizing image data for statistical process control and improving quality monitoring in manufacturing and service systems. The effectiveness of individual and combined feature extraction methods is evaluated, with the Wavelet-Fourier approach identified as the most suitable. The proposed method not only identifies image processing issues but also provides valuable information for estimating change points, fault locations, and fault sizes. This enables the resolution and prediction of faults, leading to cost and time savings in production. To perform evaluation of the proposed method, an image from a tile production line is subjected to Wavelet transform, followed by Fourier transform on the obtained coefficients. The results demonstrate the superiority of the Wavelet-Fourier method over individual methods such as Fourier transform and Wavelet transform. The proposed method exhibits comparable or improved performance in fault detection and localization compared to similar research. This study highlights the potential of utilizing image data for statistical process control and quality monitoring, offering a comprehensive solution for fault detection and analysis. The findings contribute to advancements in image processing techniques and have practical implications for enhancing quality monitoring in various industries. By leveraging image data, manufacturers can make informed decisions, enhance process performance, and improve overall product quality.

نویسندگان

Z. Khodadadi

Department of Industrial Engineering, Yazd University, Yazd, Iran

M. S. Owlia

Department of Industrial Engineering, Yazd University, Yazd, Iran

A. Amiri

Department of Industrial Engineering, Shahed University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Feng J, Fu J, Lin Z, Shang C, Li B. ...
  • Reynolds Jr MR, Lou J. An evaluation of a GLR ...
  • Stein EM, Weiss G. Introduction to Fourier Analysis on Euclidean ...
  • Zhang Z, Jing Z, Wang Z, Kuang D. Comparison of ...
  • Shen D IH. Discriminative wavelet shape descriptors for recognition of ...
  • Illanes A, Esmaeili N, Poudel P, Balakrishnan S, Friebe M. ...
  • Rao RM. Wavelet transforms: Introduction to theory and applications: Pearson ...
  • Haar A. Zur theorie der orthogonalen funktionensysteme: Georg-August-Universitat, Gottingen.; ۱۹۰۹ ...
  • Kumar S, Bhandari AK, Raj A, Swaraj K. Triple clipped ...
  • نمایش کامل مراجع