Application of Survival Tree Model in Determining Affecting Factors in Breastfeeding Duration
محل انتشار: مجله علوم پزشکی ایران، دوره: 9، شماره: 2
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 180
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JHES-9-2_002
تاریخ نمایه سازی: 8 آذر 1402
چکیده مقاله:
Background and Purpose: Survival tree model is a nonparametric method which can be used to identify the affecting factors from a specific time to the onset of an event. In this method, the categories are selected according to the most important factors. The purpose of this study was to determine the factors affecting the duration of breastfeeding in mothers and introduce the homogeneous subgroups using a survival tree model.
Methods: It was a historical cohort study analyzing the survival data of mothers with healthy single childbirths referring to the rural and urban health centers of Agh-Ghala County since ۲۰۱۱ until ۲۰۱۴. Data analyses and groupings of breastfeeding survival were performed using survival tree model with conditional inference algorithm in R Software. A separation criterion (SEP) confirmed the relevance of the model.
Results: Survival tree model results revealed that the type of consumed milk with the complementary nutrition, ethnicity and the time interval between current childbirth and the previous delivery were the most important factors affecting the duration of breastfeeding. The SEP's criterion was ۲.۰۸۲. Thus, due to the significant difference between the subgroups and the value of more than ۱ for SEP criterion, the efficiency of the model was confirmed.
Conclusions: Survival tree model could be introduced as a suitable and powerful method for ranking the duration of breastfeeding rate which presents four homogeneous subgroups for analysis in addition to identifying the predictive variables.
کلیدواژه ها:
نویسندگان
Amene Sadat Sheykholeslami
Department of Biostatistics, Faculty of Health
Nasser Behnampour
Department of Biostatistics, Faculty of Health
Reza Ali Mohammadpour
Department of Biostatistics, Faculty of Health
Fateme Abdollahi
Department of Public Health, Faculty of Health
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :