Characterization of Iranian Accessions of Aegilpos crassa Boiss. Using Flow Cytometry and Protein Analysis

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 131

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JASTMO-15-4_015

تاریخ نمایه سازی: 1 آذر 1402

چکیده مقاله:

In this study, ۱۲۰ accessions of Aegilops crassa collected from various geographical areas of Iran were analyzed with respect to genome size and protein markers. A flow cytometry survey of these accessions revealed that one hundred and thirteen of the accessions were tetraploid and seven were hexaploid. Moreover, these accessions revealed variations in high molecular weight glutenin subunit compositions. In most accessions, subunits showing electrophoretic mobility similar to that of Dy۱۲ were present. Eleven allelic variants were observed in Glu-D۱ locus with the highest (۳۰.۹۰%) and the lowest allele (۰.۵%) frequencies in ۳+۱۲ and ۲+۱۰ variants, respectively. Among ۱۷ bands selected for MALDI-TOF-TOF-MS analysis only ۶ bands were identified with high probability and ۱۱ of them had no MS/MS data. The results showed that Iranian accessions of Ae. crassa formed an interesting source of favorable glutenin subunits that might be very desirable in breeding programs for improving bread wheat quality.

نویسندگان

M. R. Naghavi

Department of Agronomy and Plant Breeding, College of Agriculture, University of Tehran, Karaj,

M. Ranjbar

Department of Agronomy and Plant Breeding, College of Agriculture, University of Tehran, Karaj,

M. H. Hassani

Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Australia.

M. J. Aghaee

Seed and Plant Improvement Institute, Karaj, Islamic Republic of Iran.

M. Bamneshin

Department of Agronomy and Plant Breeding, College of Agriculture, University of Tehran, Karaj, Islamic Republic of Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Amiour, N., Merlino, M., Leroy, P. and Branlard, G. ۲۰۰۳. ...
  • Amiour, N., Merlino, M., Leroy, P. and Branlard, G. ۲۰۰۳. ...
  • نمایش کامل مراجع