Determinants of the Transfer of Sustainability Learning in Agricultural Sector of Iran

سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 124

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JASTMO-17-6_005

تاریخ نمایه سازی: 1 آذر 1402

چکیده مقاله:

Literature review indicates that systemic agricultural human resource development interventions are rarely carried out in developing countries, and limited knowledge exists about how successful they are. Learning transfer is the generalization of material learned, such as skills acquired or knowledge gained in training, back to the job. The main aim of this study was to analyze factors influencing sustainability learning transfer among farmers participating in Diffusion-Push Plans in Fars Province, Iran. A total number of ۱۲۰ subjects were selected through stratified random sampling method. Results revealed that performance-outcomes expectations, perceived content validity, transfer design, opportunity to use, supervisor support, years of experience in farming, and age had a significant effect on participants’ learning transfer. The formula developed in this study contributes to quantify learning transfer and provides new opportunities for a deeper investigation of causal relationships among learning transfer factors using advanced statistical methods. Farmer training decision makers and other actors in the extension system should pay particular attention to the factors reported here as critical to learning transfer.

کلیدواژه ها:

Diffusion-Push Plans ، Farmer training ، Learning transfer system inventory ، Transfer of sustainability learning

نویسندگان

P. Ataei

Department of Agricultural Extension and Education, Faculty of Agriculture, Shiraz University, Shiraz, Islamic Republic of Iran.

N. Zamani

Department of Agricultural Extension and Education, Faculty of Agriculture, Shiraz University, Shiraz, Islamic Republic of Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :