Prediction and Optimization of Fish Biodiesel Characteristics Using Permittivity Properties
محل انتشار: مجله علوم و فناوری کشاورزی، دوره: 21، شماره: 2
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 124
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JASTMO-21-2_006
تاریخ نمایه سازی: 23 آبان 1402
چکیده مقاله:
The purpose of this research was to predict and optimize the fish biodiesel characteristics using its permittivity properties. The parameters of biodiesel permittivity properties such as έ, dielectric constant, and ε″, loss factor at microwave frequencies of ۴۳۴, ۹۱۵, and ۲,۴۵۰ MHz, were used as input variables. The fish biodiesel characteristics, as Fatty Acid Methyl Ester (FAME) content and flash point at three different levels of reaction time ۳, ۹, and ۲۷ min and catalyst concentrations ۱, ۱.۵, and ۲% w woil-۱, were selected as output parameters for the models. Linear Regression (LR), the Multi-Layer Perceptron (MLP), and the Radial Basis Function (RBF) as the methods of Artificial Neural Networks (ANN), and the response surface methodology were compared for prediction and optimization of FAME content and flash point. A comparison of the results showed that the RBF recorded higher coefficient of determination at frequency of ۲,۴۵۰ MHz as ۰.۹۹۹ and ۰.۹۸۸ and lower root mean square error as ۰.۰۰۹ and ۰.۰۲۳ for FAME content and flash point, respectively. The optimum condition was obtained using RSM by FAME content of ۸۹.۸۸% and flash point of ۱۵۲.۷°C with desirability of ۰.۹۹۸.
کلیدواژه ها:
نویسندگان
M. Zarein
Department of Mechanical and Biosystems Engineering, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
M. H. Khoshtaghaza
Department of Mechanical and Biosystems Engineering, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
B. Ghobadian
Department of Mechanical and Biosystems Engineering, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
H. Ameri Mahabadi
Department of Electrical Engineering, University of Malaya (UM), Kuala Lumpur, Malaysia
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :