Evaluation of Adaptive Neuro-Fuzzy Inference System Models in Estimating Saffron Yield Using Meteorological Data
محل انتشار: مجله علوم و فناوری کشاورزی، دوره: 23، شماره: 1
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 146
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JASTMO-23-1_018
تاریخ نمایه سازی: 23 آبان 1402
چکیده مقاله:
Saffron is one of the most valuable agricultural and medicinal plants of the world and has a special place in Iran's export of products. Presently, Iran is the world's largest producer and exporter of saffron and more than ۹۳/۷% of the world production belongs to Iran. However, despite the long history of saffron cultivation and its value-added in comparison to many of the other crops in the country, a lower share of new technologies is assigned to it, and its production is mainly based on local knowledge. This study aimed to develop and evaluate the performance of Adaptive Neuro-Fuzzy Inference System model (ANFIS) in calculating the yield of saffron using meteorological data from ۲۰ synoptic stations in the province, including evapotranspiration, temperature (maximum, minimum), the mean relative humidity, and rainfall. To this end, by using software Wingamma, data and parameters were analyzed and the best combinations of inputs to the model were determined. In order to assess the models, statistical parameters of correlation coefficient, the mean absolute error, and mean square error were used to predict the performance of the plant. ANFIS model was most effective when the data of total minimum temperature, precipitation, evapotranspiration, and relative humidity of autumn were used as independent variables for forecasting yield (R۲= ۰.۵۶۲۷, RMSE= ۲.۰۵۱ kg ha-۱, and MAE = ۱.۷۲۷۴ kg ha-۱) .
کلیدواژه ها:
نویسندگان
N. Nekoei
Faculty of Agriculture, University of Birjand, Islamic Republic of Iran.
M. A. Bedani
Saffron Research Group, Faculty of Agriculture, University of Birjand, Islamic Republic of Iran.
A. Khashei Siuki
Water Engineering Department, Faculty of Agriculture, University of Birjand, Islamic Republic of Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :