A SARIMA Model for Forecasting Consumer Price Index in Tanzania
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 80
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMAE-10-8_004
تاریخ نمایه سازی: 10 آبان 1402
چکیده مقاله:
People must be well-informed on market swings in today's difficult economic times in order to cut excessive spending. Rising expenditures in a variety of sectors, including business, education, and healthcare can be burdensome for consumers, and accurate forecasting of household is necessary given the current technological innovation. The Consumer Price Index (CPI) is one of the statistical indicators used to estimate the changes in prices for commodities. Forecasting CPI can assist individuals in developing a plan for making decisions on their daily consumption. This study seeks to develop a SARIMA model for forecasting consumer price indices (CPI) in Tanzania by using data collected from International Monetary Fund (IMF) website from January ۲۰۱۰ to December ۲۰۲۲. Data were evaluated using time series methods such as time plots and stationarity tests. It was discovered that there is seasonality in the CPI index. However, a serial correlogram test was performed using a residual correlogram after which the variable was estimated using the SARIMA model and SARIMA (۰, ۱, ۰) (۱, ۱, ۱)۱۲ was fitted to the time series variable. The residual analysis was explored and because almost all correlations are zero, the SARIMA (۱,۱,۱) (۰,۱,۲)۱۲ model was appropriate for forecasting CPI index in Tanzania. Consumer price index was predicted for the next eighteen months and it has been observed that the trend of CPI is likely to increase in the next eighteen months.
کلیدواژه ها:
نویسندگان
Laban Gasper
Department of ICT and Mathematics, College of Business Education (CBE) P.O. Box ۲۰۷۷, Dodoma, Tanzania
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :