Illumination Invariant Face Recognition using SQI and Weighted LBP Histogram

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 216

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-7-4_006

تاریخ نمایه سازی: 3 آبان 1402

چکیده مقاله:

Face recognition under uneven illumination is still an open problem. One of the main challenges in real-world face recognition systems is illumination variation. In this paper, a novel illumination invariant face recognition approach based on Self Quotient Image (SQI) and weighted Local Binary Pattern (WLBP) histogram has been proposed. In this system, the performance of the system is increased by using different sigma values of SQI for training and testing. Furthermore, using two multi-region uniform LBP operators for feature extraction simultaneously, made the system more robust to illumination variation. This approach gathers information of the image in different local and global levels. The weighted Chi square statistic is used for histogram comparison and NN (۱-NN) is used as classifier. The weighted approach emphasizes on the more important regions in the faces. The proposed approach is compared with some new and traditional methods like QI, SQI, QIR, MQI, DMQI, DSFQI, PCA and LDA on Yale face database B and CMU-PIE database. The experimental results show that the proposed method outperforms other tested methods.

نویسندگان

Mohsen Biglari

University of Shahrood

Faezeh Mirzaei

Kashan University

Hossein Ebrahimpour-Komleh

Kashan University

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of ...
  • J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "Face ...
  • M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, ...
  • Y. Cheng, Z. Jin, and C. Hao, "Illumination Normalization Based ...
  • S. Z. Li, R. F. Chu, S. C. Liao, and ...
  • Y. Moses, Y. Adini, and S. Ullman, "Face recognition: The ...
  • M. Nishiyama, T. Kozakaya, and O. Yamaguchi, "Illumination Normalization using ...
  • J. Wang, L. Wu, and X. He, "A new method ...
  • Y. Zhang, J. Tian, X. He, and X. Yang, "MQI ...
  • L. Zhichao and E. M. Joo, "Face Recognition under Varying ...
  • H. Wang, S. Z. Li, Y. Wang, and J. Zhang, ...
  • A. Shashua and T. Riklin-Raviv, "The quotient image: Class-based re-rendering ...
  • S. Shan, W. Gao, B. Cao, and D. Zhao, "Illumination ...
  • X. G. He, J. Tian, L. F. Wu, Y. Y. ...
  • X. Chai, S. Shan, X. Chen, and W. Gao, "Locally ...
  • M. Wai Lee and S. Ranganath, "Pose-invariant face recognition using ...
  • X. Zhang and Y. Gao, "Face recognition across pose: A ...
  • L. Wiskott, J. M. Fellous, N. Kuiger, and C. von ...
  • T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and ...
  • B. Amberg, R. Knothe, and T. Vetter, "Expression invariant ۳D ...
  • A. Bronstein, M. Bronstein, and R. Kimmel, "Robust expression-invariant face ...
  • H. S. Lee and D. Kim, "Expression-invariant face recognition by ...
  • I. A. Kakadiaris, G. Passalis, G. Toderici, M. N. Murtuza, ...
  • N. Alyuz, B. Gokberk, and L. Akarun, "۳D Face Recognition ...
  • M. De Marsico, M. Nappi, and D. Riccio, "FARO: Face ...
  • N. Alyuz, B. Gokberk, L. Spreeuwers, R. Veldhuis, and L. ...
  • T. Ojala, M. Pietikäinen, and D. Harwood, "A comparative study ...
  • A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, ...
  • X. Zou, J. Kittler, and K. Messer, "Illumination invariant face ...
  • D. Maturana, D. Mery, and Á. Soto, "Face recognition with ...
  • T. Sim, S. Baker, and M. Bsat, "The CMU pose, ...
  • نمایش کامل مراجع