A Taxonomy for RNA Motif Discovery
محل انتشار: مجله مهندسی کامپیوتر و دانش، دوره: 6، شماره: 1
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 192
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CKE-6-1_002
تاریخ نمایه سازی: 3 آبان 1402
چکیده مقاله:
Motifs have critical impacts on the behavioral and structural characteristics of RNA sequences. Understanding and predicting the functionalities and interactions of an RNA sequence requires discovering and identifying its motifs. Due to the importance of motif discovery in bioinformatics, a significant corpus of techniques and algorithms have been proposed, each of which has various advantages and limitations and hence, are suitable for specific applications. To understand these techniques and algorithms, compare them, and choose the most suitable one for a particular application scenario, it is crucial to have a clear understanding of the different vital aspects that characterize these algorithms. The lack of such a framework to study these aspects is a serious existing challenge in the literature that needs further investigation. In this paper, we propose a taxonomy and a framework to address this issue. We define the concept of motif discovery process and three aspects that characterize such a process, which are motif type, discovery technique, and application. We then study the literature and classify the existing approaches along with these aspects. This will give the reader a broader view and more precise understanding of what these techniques and algorithms do, how they do it, and what is the most suitable application for each of them. We then present the possible gaps and challenges foreseen to be the future directions of the area.
کلیدواژه ها:
نویسندگان
Zahra Mir
Department of Bioinformatics, University of Zabol, Zabol, Iran
Mohammad allahbakhsh
Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Ali Maghsoudi
Department of Bioinformatics, University of Zabol, Zabol, Iran Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
Haleh Amintoosi
Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :