A COMPARISON OF SAMPLING SCHEMAS FOR ASSESSING THE ACCURACY OF CLASSIFIED REMOTELY SENSED DATA

محل انتشار: همایش ژئوماتیک 83
سال انتشار: 1383
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,744

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

GEO83_52

تاریخ نمایه سازی: 4 آبان 1384

چکیده مقاله:

Accuracy assessment determines the value of the resulting information to a particular user, i.e. the information value. In the conventional ccuracy assessment an error matrix and some accuracy measures derived from it are used. An error matrix is established using some known samples in reference data and corresponding classified data. There are various factors that affect the performance of the accuracy assessment. The accuracy assessment techniques are not valuable if the method of collecting samples used in error matrix is not considered. One the other factor that affected on accuracy assessment is the number of samples in the map. In this paper with using of four synthetic images having different characteristics and one real image, these factors are verified in some experiments. In these experiments five sampling schema including simple random sampling, cluster sampling, stratified random sampling, systematic sampling, and stratified systematic unaligned sampling are studied. The results represent that depend on specific conditions such as type and size of the study region and object characteristics, different sampling methods and sample sizes are preferred.

نویسندگان

M.S.Hashemian

Department of image processing, National Cartographic Centre (NCC) of Iran, Meraj Av., Azadi Sq., Tehran, Iran

A.A.Abkar

Faculty of Geodesy and Geomatics Eng., KN Toosi University of Technology, Vali_Asr Street, Mirdamad Cross, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • } [1] Abkar, A.A., (1999), Likelihood-B ased Segmentation and Classification ...
  • } [2] Fatemi, S.B., (2002), Model-based Image Analysis of Remotely ...
  • } [3] Congalton, R. G., (1988), A Comparison of Sampling ...
  • } [4] Congalton, R. G., (1991), A Review of Assessing ...
  • نمایش کامل مراجع