Operational matrix and their applications for solving time-varying delay systems

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 144

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-9_005

تاریخ نمایه سازی: 24 مهر 1402

چکیده مقاله:

The purpose of this paper is to provide a generalized formulation for Hat basis functions and to present the operational matrices for finding the approximate solution for time-invariant delay systems‎. ‎From this prospect‎, ‎the hat basic functions of integration‎, ‎delay‎, ‎product‎, ‎and dual are derived‎, ‎which are utilized to practically reduce the time-varying delay systems solution to the simplest system of algebraic equations‎. ‎The numerical results compared and tabled with previous works showcase the method's simplicity‎, ‎clarity‎, ‎and effectiveness through the three examples.

نویسندگان

Reza Ezzati

Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

Mostafa Safavi

Department of Mathematics, University of Texas at Dallas, Richardson, USA

Amirahmad Khajehnasiri

Department of Mathematics, North Tehran Branch, Islamic Azad University, Tehran, Iran

Akbar Jafari Shaerlar

Department of Mathematics, Khalkhal Branch, Islamic Azad University, Khalkhal, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • N. Aghazadeh and A.A. Khajehnasiri, Solving nonlinear two-dimensional Volterra integro-differential ...
  • Q.H. Ansari, I.V. Konnov and J.C. Yao, Existence of a ...
  • Q.H. Ansari, S. Schaible and J.C. Yao System of vector ...
  • K.B. Datta and B. M. Mohan, Orthogonal Functions in system ...
  • A. Ebadian and A.A. Khajehnasiri. Block-pulse functions and their applications ...
  • A. Ebadian, H. Rahmani Fazli and A.A. Khajehnasiri, Solution of ...
  • W.G. Glockle and T.F. Nonnenmacher, A fractional calculus approach of ...
  • M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini and C. Cattani, ...
  • M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini and C. Cattani, ...
  • S.M. Hoseini and H.R. Marzban, Analysis of time-varying delay systems ...
  • C. Hwang and M.Y. Chen, Analysis of time-delay systems using ...
  • A.A Khajehnasiri and R. Ezzati, Boubaker polynomials and their applications ...
  • A.A. Khajehnasiri and M. Safavi, Solving fractional Black-Scholes equation by ...
  • K. Kothari, U. Mehta and J. Vanualailai, A novel approach ...
  • H.R. Marzban and M. Razzaghi, Solution of piecwise constant delay ...
  • H.R. Marzban and M. Razzaghi, Solution of time-varying delay systems ...
  • F. Mirzaee and E. Hadadiyan, Application of two-dimensional hat functions ...
  • S. Najafalizadeh and R. Ezzati, A block pulse operational matrix ...
  • P.N. Paraskevopoulos, Legendre series approach to identification and analysis of ...
  • R.K. Pandey, N. Kumar and R.N. Mohaptra, An Approximate method ...
  • P. Rahimkhani, Y. Ordokhani and E. Babolian, An efficient approximate ...
  • H. Rahmani Fazli, F. Hassani, A. Ebadian and A. . ...
  • M. Saeedi and M.M. Moghadam, Numerical solution of nonlinear Volterra ...
  • H. Saeedi, N. Mollahasani, M.M. Moghadam and G.N. Chuev, An ...
  • E. Safaie, M.H. Farahi and M. Farmani Ardehaie, A new ...
  • M. Safavi, A.A. Khajehnasiri, A. Jafari and J. Banar, A ...
  • M.P. Tripathi, V.K. Baranwal, R.K. Pandey and O. P. Singh, ...
  • X.T.Wang, Numerical solutions of optimal control for linear time-varying systems ...
  • نمایش کامل مراجع