Solving system of first kind integral equations via the Chebyshev collocation approach

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 124

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-9_010

تاریخ نمایه سازی: 24 مهر 1402

چکیده مقاله:

This paper discusses a numerical method for solving a first-kind Volterra integral equations system. Because of the ill-posedness of these equations, we need to apply an efficient computational method to discrete them to the system of algebraic equations. An expansion method known as the Chebyshev collocation method, based on the Chebyshev polynomials of the third kind, is employed to convert the system of integral equations to the linear algebraic system of equations. By solving the algebraic system, we conclude an approximate solution. Some numerical results support the accuracy and efficiency of the stated method.

کلیدواژه ها:

System of first-kind Volterra integral equations ، Chebyshev polynomials of the third-kind ، Collocation method ، Absolute error

نویسندگان

Leila Torkzadeh

Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, P. O. Box ۳۵۱۹۵-۳۶۳, Semnan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • K.E. Atkinson, An Introduction to Numerical Analysis, ۲nd edition, John ...
  • K.E. Atkinson, The Numerical Solution of Integral Equations of the ...
  • D. Barrera, M. Barton, I. Chiarella and S. Remogna, On ...
  • J. Biazar and H. Ghazvini, He’s homotopy perturbation method for ...
  • A. Golbabai and B. Keramati, Easy computational approach to solution ...
  • M. Javidi and A. Golbabai, A numerical solution for solving ...
  • G.H. Kazemi Gelian, R. Ghoochani Shirvan and M.A. Fariborzi Araghi, ...
  • R. Kress, Linear Integral Equations, Springer-Verlag, New York, ۱۹۹۸ ...
  • K. Maleknejad, N. Aghazadeh and M. Rabbani, Numerical solution of ...
  • K. Maleknejad, K. Nouri and M. Nosrati Sahlan, Convergence of ...
  • K. Maleknejad, M. Shahrezaee and H. Khatami, Numerical solution of ...
  • M. Mandal, K. Kant and G. Nelakanti, Projection and multi-projection ...
  • J.C. Mason and D.C. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC, ...
  • N. Negarchi and K. Nouri, Numerical solution of Volterra–Fredholm integral ...
  • K. Nouri, An efficient method for solving system of Volterra ...
  • R. Qiu, X. Duan, Q. Huangpeng and L. Yan, The ...
  • R. Qiu, L. Yan and X. Duan, Solving Fredholm integral ...
  • B.G. Spencer Doman, The Classical Orthogonal Polynomials, World Scientific Publishing, ...
  • D. Yuan and X. Zhang, An overview of numerical methods ...
  • نمایش کامل مراجع