Portfolio optimization based on return prediction using multiple parallelinput CNN-LSTM
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 210
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICISE09_111
تاریخ نمایه سازی: 15 مهر 1402
چکیده مقاله:
The success of any investment portfolio always depends on the future behavior and price events ofassets. Therefore, the better one can predict the future of an asset, the more profitable decisions can bemade. Today, with the expansion of machine learning models and their advanced sub-branch i.e. deeplearning, it is possible to better predict the future of assets and make decisions based on thosepredictions. In this article, a deep learning method called CNN-LSTM with multiple parallel inputs isintroduced and is shown that it is able to provide a more accurate prediction of asset returns for the nextperiod than other machine learning and deep learning models. Then, these forecasts will be used in twostages to build the portfolio. First, the assets that have the highest predicted return are selected, and thenin the second step, Markowitz's mean-variance model will be used to obtain the optimal ratio of theselected assets for trading in the next period. The model test is performed on the assets randomlyselected from different New York Stock Exchange industries based on the ۱۱ Global IndustryClassification Standard (GICS) Stock Market Sectors.
کلیدواژه ها:
نویسندگان
Mahdi Ashrafzadeh
Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran,Iran;
Hatef Kiabakht
Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran,Iran;