Solving two-dimensional nonlinear Volterra integral equations using Rationalized Haar functions

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 151

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-8_010

تاریخ نمایه سازی: 4 مهر 1402

چکیده مقاله:

In this paper, we have introduced a computational method for a class of two-dimensional nonlinear Volterra integral equations, based on the expansion of the solution as a series of Haar functions. To achieve this aim it is necessary to define the integral operator. The Banach fixed point theorem guarantees that under certain assumptions this operator has a unique fixed point, we have introduced an orthogonal projection and by interpolation property, we have achieved an operational matrix of integration. Also, by using the Banach fixed point theorem, we get an upper bound for the error of our method. Since our examples in this article are selected from different references, so should be the numerical results obtained here can be compared with other numerical methods.

نویسندگان

Majid Erfanian

Department of Science, School of Mathematical Sciences, University of Zabol, Zabol, Iran

Hamed Zeidabadi

Faculty of Engineering, Sabzevar University of New Technology, Sabzevar, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • I. Aziz and R. Amin, Numerical solution of a class ...
  • I. Aziz, S. Islam and M. Asif, Haar wavelet collocation ...
  • I. Aziz and I. Khan, Numerical solution of diffusion and ...
  • P. Assari, On the numerical solution of two-dimensional integral equations ...
  • K.E. Atkinson, The Numerical Solution of Integral Equations of the ...
  • A. Babaaghaie and K. Maleknejad, Numerical solutions of nonlinear two-dimensional ...
  • E. Babolian, S. Bazm and P. Lima, Numerical solution of ...
  • H. Brunner, On the numerical solution of nonlinear Volterra–Fredholm integral ...
  • H.J. Dobner, Bounds for the solution of hyperbolic problems, Comput. ...
  • M. Erfanian and M. Gachpazan, A new method for solving ...
  • M. Erfanian, M. Gachpazan and S. Kosari, A new method ...
  • M. Erfanian and A. Mansoori, Rationalized Haar wavelet bases to ...
  • M. Erfanian,The approximate solution of nonlinear mixed Volterra-Fredholm Hammerstein integral ...
  • G.Q. Han, K. Hayami, K. Sugihara and J. Wang, Extrapolation ...
  • Z. Kamont and H. Leszczynski, Numerical solutions to the Darboux ...
  • U. Lepik, Haar wavelet method for nonlinear integro-differential equations, Appl. ...
  • U, Lepik, Solving fractional integral equations by the Haar wavelet ...
  • F. Mirzaee and N. Samadyar, Numerical solution based on two-dimensional ...
  • K. Maleknejad, S. Sohrabi and B. Baranji, Two-dimensional PCBFs: application ...
  • S. Mckee, T. Tang and T. Diogo, An Euler-type method ...
  • S. Nemati, P.M. Lima and Y. Ordokhani, Numerical solution of ...
  • M. Rastegar, A. Bazrafshan Moghaddam, M. Erfanian and B.B. Moghaddam, ...
  • M. Razzaghi and J. Nazarzadeh, Walsh functions, Wiley Encycl. Electric. ...
  • P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge University Press, ...
  • نمایش کامل مراجع