Memetic algorithm for solving multi-objective assignment problem

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 107

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-7_006

تاریخ نمایه سازی: 28 شهریور 1402

چکیده مقاله:

Despite the fact that statistical solutions for dealing with Multi-Objective Assignment Problems (MOAP) have just been available for a long time, the further application of Evolutionary Algorithms (EAs) to such difficulties presents a vehicle for tackling MOAP with an extraordinarily large scope. MOGASA is a suggested multi-objective optimizer with simulated annealing that combines the hegemony notion with a discrete wavelet transform. While decomposition streamlines the multi-objective problem (MOP) by expressing it as a collection of many corresponding authors, tackling these issues at the same time in the GA context may result in early agreement due to the command meanwhile screening process, which employs the Methodology as a criterion. Supremacy is important in constructing the leaders archive because it allows the chosen leaders to encompass fewer dense regions, eliminating local minima and meanwhile producing a more diverse approximating Allocative efficiency front. MOGASA outperforms several decomposition-based growth strategies, according to results from ۳۱ stand meanwhile are MOPs. MATLAB was used to generate all of the findings (R۲۰۱۷b).

نویسندگان

Tuqaa Radhi

Department of Mathematics, University of Baghdad, Baghdad ۰۰۹۶۴, Iraq

Iraq Abass

Department of Mathematics, University of Baghdad, Baghdad ۰۰۹۶۴, Iraq

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C. Adiche and M. Aider, A hybrid method for solving ...
  • M. Ayob, S. Abdullah and A.M.A. Malik, A practical examination ...
  • H. Basirzadeh, Ones assignment method for solving assignment problems, Appl. ...
  • M. Caramia, P. Dell’Olmo and G.F. Italiano, Novel local-search-based approaches ...
  • C.A.C. Coello, G.B. Lamont and D.A. Van. Veldhuizen evolutionary algorithms ...
  • E. Ersoy, E. ¨ Ozcan and A. S. Uyar, Memetic ...
  • A.M.K. Hammadi, Application of linear programming according to the allocation ...
  • A.M.K. Hammadi, Solving multi objective Assignment problem using Tabu search ...
  • A.A. Humaidan, A model of linear programming for the movement ...
  • S. Mirjalili, S. Saremi, S.M. Mirjalili and L.D.S. Coelho, Multi-objective ...
  • S. Mardle, S. Pascoe, and M. Tamiz, An investigation of ...
  • R. Qu, E.K. Burke, B. McCollum, L.T.G. Merlot, and S.Y. ...
  • D.H. Rogers, M. Alam and L.K. Shaw, Kansas Irrigation Trends, ...
  • K. Salehi, An approach for solving multi-objective assignment problem with ...
  • R.H. Sheah and I.T. Abbas, Using multi-objective bat algorithm for ...
  • S. Singh, A comparative analysis of assignment problem, IOSR J. ...
  • H. Turabieh and S. Abdullah, An integrated hybrid approach to ...
  • E.L. Ulungu and J. Teghem, Multi-objective combinatorial optimization problems: A ...
  • G. Yue, M. Chen and H. Ishii, Bi-criteria bottleneck assignment ...
  • نمایش کامل مراجع