تشخیص بیماری درخت لیمو با استفاده از شبکه کانولوشن عمیق
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 298
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AGRIHORMOZ01_059
تاریخ نمایه سازی: 20 شهریور 1402
چکیده مقاله:
تشخیص سلامت یا بیماری گیاه، اولین مرحله در نگهداری بهتر یا ارائه درمان مناسب می باشد. هر چقدر تشخیص بیماری زودتر و دقیق تر انجام گیرد، امکان نجات آن بیشتر خواهد بود. درخت لیمو یکی از محصولات اصلی باغات استان هرمزگان بوده که نقش مهمی در کشاورزی این منطقه دارد. در سال های اخیر لیمو دچار بیماری هایی شده که بر حجم تولیدی و کیفیت محصول آن اثرگذار بوده است. از آنجا که یادگیری عمیق در سال های اخیر در کاربردهای مختلف بسیار موفق عمل کرده، در این پژوهش مدلی مبتنی بر شبکه کانولوشن عمیق جهت تشخیص سلامت یا نوع بیماری درخت لیمو (کمبود کلسیم، مینوز مرکبات، کنه مرکبات و پسیل) از روی تصویر برگ آن پیشنهاد شده است. جهت آموزش این مدل، ۲۱۴۰ تصویر برگ از درختان لیموی سالم و درختان مبتلا به ۴ بیماری فوق جمع آوری شده است. ارزیابی ها نشان از کارآیی بالای مدل پیشنهادی برای تشخیص سلامت یا نوع بیماری هستند به طوری که صحت کلی آن در هر ۵ دسته برابر ۹۸.۱% است. در صورت دسترسی به خدمات این مدل به شکل برخط، امکان بررسی دقیق سلامت یا نوع بیماری لیمو توسط خود کشاورز در فواصل زمانی کوتاه وجود خواهد شد.
کلیدواژه ها:
نویسندگان
عبدالله خلیلی
استادیار، عضو هیات علمی گروه برق و کامپیوتر، دانشگاه هرمزگان، ایران
عباس حریفی
استادیار، عضو هیات علمی گروه برق و کامپیوتر، دانشگاه هرمزگان، ایران
شهرام گلزاری
دانشیار، عضو هیات علمی گروه برق و کامپیوتر، دانشگاه هرمزگان، ایران
چمران همتی
استادیار، عضو هیات علمی گروه کشاورزی، مجتمع آموزش عالی میناب، دانشگاه هرمزگان، ایران
مهرنوش نیکوئی
استادیار، عضو هیات علمی گروه کشاورزی، مجتمع آموزش عالی میناب، دانشگاه هرمزگان، ایران