Matrix Equations of the Motion of Multibody Systems with a Tree Structure in Hamiltonian Variables
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 114
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JACM-9-4_016
تاریخ نمایه سازی: 19 شهریور 1402
چکیده مقاله:
The paper develops the methods for computer simulation of the dynamics of absolutely rigid body systems with a tree structure. The equations of motion are presented in compact matrix form. The case of holonomic constraints is also considered. Since the independent parameters uniquely determine the positions and velocities of the bodies of the system in space, the generalized coordinates and variables with the dimension of impulses are chosen. A feature of the system of equations is that it is resolved with respect to the derivatives of the generalized momenta and does not contain constraint reactions. The derivation of the proposed form of the equations of motion from the Hamilton principle using the matrix-geometric approach is given. Recursive formulas for determining all kinematic and dynamic variables included in the equations are obtained. As an example of a mechanical system with six degrees of freedom, all stages of preparing primary information and compiling equations of motion in the proposed form are demonstrated. Three algorithms are presented that allow resolving the obtained extended system of equations with respect to the generalized velocities and momenta without direct formation of the Hamilton equations. The classification of the equations of motion of rigid body systems is carried out from their structure point of view. The place of the deduced equations in the general classification is also demonstrated. A comparative analysis of the computational complexity of the considered methods for various classes of mechanical systems is carried out. Some diagrams are constructed that allow choosing the most effective modeling method depending on the characteristics of the mechanical system: the number of bodies, the number of degrees of freedom and the structure of the system.
کلیدواژه ها:
نویسندگان
Vladimir Ivanov
Department of Mechanics and Mathematics, Perm State University, ۱۵, Bukireva st., Perm, ۶۱۴۹۹۰, Russia
Vladimir Shimanovskiy
Department of Mechanics and Mathematics, Perm State University, ۱۵, Bukireva st., Perm, ۶۱۴۹۹۰, Russia
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :