Estimation of parameters of non-linear regression based on PSOGSA algorithm

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 215

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-6_005

تاریخ نمایه سازی: 18 شهریور 1402

چکیده مقاله:

Although computational strategies for taking care of Non-linear Regression Based on Hybrid Algorithms (EPNRHA) to Estimation of Parameters have always been available for years, the further application of Evolutionary Algorithms (EAs) to such difficulties provides a framework for addressing a wide range of Multi-Objective Conflicts (MOPs).  NRPSOGSA is an Estimation of Parameters of Non-linear Regression Gravitational Search Algorithm with Practical Swarm Optimization that involves the synthesis of hegemony by using the hybrid algorithm (PSOGSA) approach is utilized. Whilst Gravitational Search Algorithm with Practical Swarm Optimization Since the leader hiring process uses the Tchebycheff Strategy as a criterion, simplifying the multi-objective problem (MOP) by rewriting it as a set of Tchebycheff Approach, solving these issues at the same time within the GSA context may lead to rapid resolution. Dominance is important in constructing the leader's library because it allows the chosen leaders to encompass fewer dense places, reducing global optimization problems and producing a more diverse approximated Pareto front. ۶ non-linear standard functions yielded this result. PSOGSA appears to be more productive than GSA, PSO, and BAT. All of the outcomes were completed. by MATLAB (R۲۰۲۰b).

نویسندگان

Ibetehaj Loqman

Department of Mathematics, University of Baghdad, Baghdad ۰۰۹۶۴, Iraq

Iraq Abass

Department of Mathematics, University of Baghdad, Baghdad ۰۰۹۶۴, Iraq

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H.A. Alsattar, A.A. Zaidan and B.B. Zaidan, Novel meta-heuristic bald ...
  • H.A. AlSattar, A.A. Zaidan, B.B. Zaidan, M.A. Bakar, R.T. Mohammed, ...
  • W.M. Aly, Evaluation of Cuckoo search usage for model parameters ...
  • S.A. Angayarkanni, R. Sivakumar and Y.R. Rao, Hybrid grey wolf: ...
  • P.A.N. Bosman and D. Thierens, The balance between proximity and ...
  • H. Bunke, ۱۸ Parameter estimation in nonlinear regression models, Elsevier, ...
  • C. Coello Coello and M. Salazar Lechuga, MOPSO: A proposal ...
  • D. Cuthbert, F.S. Wood and J.W. Gorman, Fitting equation to ...
  • R. Eberhart and J. Kennedy, Particle swarm optimization, Proc. IEEE ...
  • F. Galton, Arithmetic by smell, Psych. Rev. ۱ (۱۸۹۴), ۶۱–۶۲ ...
  • D.M. Gujarati, Basic Econometrics,۴th ed., Tata McGraw Hill, New Delhi, ...
  • H.H. Huang, C.K. Hsiao, S.Y. Huang, P. Peterson, E. Baker ...
  • M. Kapanoglu, I. Ozan Koc and S. Erdogmus, Genetic algorithms ...
  • E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, GSA:agravitational search algorithm, ...
  • R.H. Sheah and I.T. Abbas, Using multi-objective bat algorithm for ...
  • X.S. Yang and S. Deb, Engineering optimization by Cuckoo search, ...
  • X.S. Yang and A.H. Gandomi, Bat algorithm: a novel approach ...
  • نمایش کامل مراجع