Evaluation of Combination Methods for Garlic Evapotranspiration Estimation
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 121
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IAR-34-2_011
تاریخ نمایه سازی: 13 شهریور 1402
چکیده مقاله:
ABSTRACT-Different evapotranspiration (ET) estimation equations having different accuracy with different conditions have been developed for ET estimation. This study will firstly focus on the estimation of ۱۳ climatic equations of daily garlic ET estimation whose ET is measured by lysimeter to provide information which can be helpful in selecting an appropriate ET equation. The paper aims at showing the potential for combining the result of the best equation to improve the overall accuracy. The findings showed that the five equations of FAO ۵۶ Penman–Monteith, ASCE Penman–Monteith, Kimberly Penman, Penman, and FAO-۲۴ Blaney-Criddle were the most accurateequations for estimating garlic ET. The results of these five equations were combined using the three combination methods of Simple Average Method (C-SAM), multiple linear regression (C-MLR) and Adaptive Neuro-Fuzzy Interface System (C-ANFIS).The comparison of combination methods at the test stage showed that although C-SAM used simpler equations than C-MLR but its results were more reasonable than C-MLR. Overall, the results of these two combination methods did not significantly surpass those of the best ET estimation equations (FAO ۵۶ PM); however,C-ANFIS combination method estimated ET better than the other techniques. Based on the results of this study, the C-ANFIS combination method is recommended for estimating garlic ET.
کلیدواژه ها:
نویسندگان
Seyed Morteza Seyedian
Department of Agriculture, University of Gonbad-Kavous, Gonbad-Kavous, I. R. Iran.
M. Farasati
Department of Water Engineering, Razi University, Kermanshah, I. R. Iran.
O. Bahmani
Department of Water Engineering, BualiSina University, Hamedan, I. R. Iran.
J. Sajad
Department of Agriculture, University of Gonbad-Kavous, Gonbad-Kavous, I. R. Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :