Introducing correctness coefficient as an accuracy measure for sub pixel classification results

محل انتشار: همایش ژئوماتیک 83
سال انتشار: 1383
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,808

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:


تاریخ نمایه سازی: 4 آبان 1384

چکیده مقاله:

After each classification its results must be evaluated and their accuracy must be assessed. In respect of the result’s type (thematic map/fraction map), an adequate strategy for accuracy assessment must be chosen. Methods of accuracy assessment for traditional pixel-based classifications are not fully suitable for sub pixel classifications. Because, training and ground truth data are pixel-based and they can not be used directly for accuracy assessment of the sub pixel classification results (fraction maps).Generally there is no common and standard sub pixel accuracy assessment method for evaluation of the sub pixel classification results. Very few methods and measures such as entropy and cross entropy have been proposed for the sub pixel accuracy assessment. These have some limitations to be used in accuracy asseement of the sub pixel classiifcation results. Cross entropy needs to a fuzzy ground truth data set, the matter that is not available simply. For this purpose, we introduce the correctness coeffient parameter for the sub pixel accuracy assessment. Correctness coeffient expresses the matching rate of the results of subpixel classification (fraction maps) with the ground truth data. Correctness coefficient is one of the efforts to ensure the flexibility and consistency of the sub pixel accuracy assessment regarding the type of the available data and classification methods. The proposed method for the accuracy assessment of the sub pixel classifiers make possible to inspect the classes individually. Additionally each class can be investigated individually in respect of the corresponding commission and omission errors. An experiment using the real data has been implemented in order to show the ability of the new accuracy measure.


Hassan Emami

KN Toosi Univ. of Technology

Sayyed Bagher Fatemi

KN Toosi Univ. of Technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • _ Conese C., Maselli F., 1992, Use of error matrices ...
  • _ Emami H., 2002, Evaluation and decomposition of mixed pixels ...
  • _ Fisher, P., 1997, The Pixel: a Snare and a ...
  • _ Foody G.M., 1996, Approaches for the production and evaluation ...
  • _ Foody G.M., 2002, Status of land cover classification accuracy ...
  • _ Gorte B , 1998, Probabilistic segmentation of remotely sensed ...
  • _ Maselli F., Rodolfi A., Conese C., 1996 _ Fuzzy ...
  • _ Richards J.A , 1993 , Remote Sensing Digital Image ...
  • نمایش کامل مراجع