Simulation of Two Stands Cold Rolling Mill Process Using Neural Networks and Genetic Algorithms in Combination to Avoid the Chatter Phenomenon
محل انتشار: مجله مهندسی برق مجلسی، دوره: 9، شماره: 1
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 130
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEE-9-1_003
تاریخ نمایه سازی: 12 شهریور 1402
چکیده مقاله:
Rolling mill Industry is one of the most profitable industries in the world. Chatter phenomenon is one of the key issues in this industry. Chatter or rolling unwanted vibrations not only has an adverse effect on product quality, but also reduces considerably the efficiency with reduced rolling velocities of rolling lines.This paper is an attempt to simulate the phenomenon of Chatter more accurate than the previous performed simulations. In order to increase the production speed, it needs to avoid parameters which effect on the Chatter and varieties with the rolling lines condition. Actual values of these parameters were determined in the archives of the Mobarakeh two stand cold rolling mills and collected on the ۲۱۰ case study of real chattering. To simulate the experiment, a neural network is trained and weights and bias values of the neural network with genetic optimization algorithm were used to get an optimal neural network which reduces bugs on the test data. So this model is capable to predict speed of Chatter threshold on rolling process of two stand cold rolling mill with the accuracy less than one percent. So it can be used in rolling process with the building intelligent recognition systems to prevent the creator conditions of the chatter frequency range.
کلیدواژه ها:
نویسندگان
Behzad BahramiNejad
Majlesi Branch, Islamic Azad University
Mehrdad Dehghani
Majlesi Branch, Islamic Azad University
Sayed Ali Mousavi
Najafabad Branch, Islamic Azad University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :