Output Electrical Power Control of Horizontal Axis Wind Turbine Using Indirect Model Reference Adaptive Neuro Controller

سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 115

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-9-2_002

تاریخ نمایه سازی: 12 شهریور 1402

چکیده مقاله:

In this paper, we investigate on Indirect Model Reference Adaptive Neuro Control (IMRANC), for output electrical power tracking of a nonlinear non-affine Horizontal Axis Wind Turbine (HAWT). The nonlinear system is first identified by the Nonlinear Autoregressive network with Exogenous inputs (NARX) model that is a recurrent dynamic network.  Afterward an IMRANC is designed based on NARX identified model to reach the close loop system to desired reference model. The MLP networks are applied for both of model and controller subsystems and are then trained by the Marquardt-Levenberg Back-Propagation (LMBP) algorithm while the Tapped Delay Lines (TDL) components are considered over input and feedback paths. Simulation results are final presented to validate the effectiveness of the proposed method like robustness and good load disturbance attenuation and accurate tracking, even in the presence of parameter variations due to changing of hydraulic pressure in hydraulic pitch system and also disturbances on the system.

کلیدواژه ها:

نویسندگان

Vahid Azimi

Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, OH ۴۴۱۱۵, USA

Mohammad Bagher Menhaj

Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. S. Yilmaz, Z. Ozer, “Pitch angle control in wind ...
  • C. Sloth, T. Esbensen, and J. Stoustrup, “Robust and fault-tolerant ...
  • H. Camblong, “Digital robust control of a variable speed pitch ...
  • P. F. Odgaard, J. Stoustrup, and M. Kinnaert, “Fault Tolerant ...
  • O. Ognyanova, P. Petkov, E. Haralanova, and T. Puleva, “Robust ...
  • K. E. Johnson, L. Y. Pao, M. J. Balas, and ...
  • T. Esbensen, C. Sloth, “Fault diagnosis and fault-tolerant control of ...
  • A. Perdana, “Dynamic models of wind turbines”, PHD Thesis, ۲۰۰۸ ...
  • C. Dobrila, R. Stefansen, “Fault tolerant wind turbine control”, MSc ...
  • K. Hammerum, “A fatigue approach to wind turbine control”, PHD ...
  • V. Azimi, M. A. Nekoui, and A. Fakharian., “Robust multi-objective ...
  • V. Azimi, A. Fakharian, and M. B. Menhaj “Position and ...
  • V. Azimi, M. B. Menhaj, and A. Fakharian, “Robust H۲/ ...
  • V. Azimi, M. B. Menhaj, and A. Fakharian, “Fuzzy Robust ...
  • V. Azimi, A. Fakharian, and M. B. Menhaj, “Robust Mixed-Sensitivity ...
  • A. Fakharian, V. Azimi, “Robust mixed-sensitivity H∞ control for a ...
  • V. Azimi, M. A. Nekoui, and A. Fakharian, “Speed and ...
  • V. Azimi, M. B. Menhaj, and A. Fakharian, “Fuzzy Mixed-Sensitivity ...
  • V. Azimi, M. B. Menhaj, and A. Fakharian, “Tool position ...
  • A. Dzielinski, “Neural network based NARX models in nonlinear adaptive ...
  • H. T. Siegelmann, B. G. Horne, and C. L. Giles, ...
  • E. Diaconescu, “The use of NARX Neural Networks to predict ...
  • M. T. Hagan, M. B. Menhaj, “Training feedforward networks with ...
  • S. Suresh, S. N. Omkar, and V. Mani, “Parallel implementation ...
  • J. J. Rubio, “Modified optimal control with a back propagation ...
  • W. Yu, A. S. Poznyak, “Indirect adaptive control via parallel ...
  • Q. I. Ruiyun, A. B. Mietek, “Indirect adaptive controller based ...
  • نمایش کامل مراجع