Heuristic model free optimal controller design using gradient based PSO

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 135

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-10-1_006

تاریخ نمایه سازی: 12 شهریور 1402

چکیده مقاله:

Designing nonlinear optimal controllers such as Minimum Variance Controller (MVC) has many difficulties. Main difficulties are ۱) in order to design controller; the explicit relations between outputs and inputs must be executable. This relation is defined implicitly in the nonlinear models; ۲) learning controller is high dimensional-multimodal optimization task and search space can be extremely rugged and has many local minima. For overcoming these disadvantages, in this paper, the model free optimal controller scheme is utilized. In model free controller, as the system model is not available, the gradient of the cost function cannot be executed. Instead, in this paper, a relation between gradient of the controller with gradient of the system model is derived by inverse lemma. The controller structure is selected to be neural network. Then, the gradient based PSO (GPSO) is proposed to learning the controller. GPSO has both advantages of global searching and convergence properties. The application of the methodology to the empirical the CSTR model indicates that this approach gives very credible estimates of the controller. The simulation results indicate that the proposed method can be more accurate than existing methods.

کلیدواژه ها:

نویسندگان

Yousef Alipourri

Iran University of science and technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Noel, “A new gradient based particle swarm optimization algorithm ...
  • K. Izui, S. Nishiwaki, M. Yoshimura, “Swarm algorithms for single- ...
  • V. Plevris, M. Papadrakakis, “A Hybrid Particle Swarm—Gradient Algorithm for ...
  • S. Chen, T. Mei, M. Luo, X. Yang, “Identification of ...
  • L. D. S. Coelho, V. C. Mariani, “Particle swarm optimization ...
  • S. Das, P. Koduru, M. Gui, M. Cochran, A. Wareing, ...
  • Y, Maeda, T. Kuratani, “Simultaneous perturbation particle swarm optimization”, Proceedings ...
  • K.. Funahashi, “On the approximate realization of continuous mappings by ...
  • M.D. Oca, T. Stützle, M. Birattar, M. Dorigo, “Frankenstein’s PSO: ...
  • M. J. Grimble, “GMV control of nonlinear multivariable systems”, UKACC ...
  • J. Marsden, Elementary Classical Analysis. San Francisco, CA.: Freeman Publishing, ...
  • C. Cartis, N. I. M. Gould, Ph. L. Toint, “On ...
  • Y. Nesterov, “Introductory Lectures on Convex Optimization”, Applied Optimization, Kluwer ...
  • D. M. Bates, D. G. Watts, Nonlinear regression analysis and ...
  • R. K. Pearson, B. A. Ogunnaike, “Nonlinear process identification”, in ...
  • F. J. Doyle, A. Packard, M. Morari, “Robust controller design ...
  • T. D. Knapp, H. M. Budman, “Robust control design of ...
  • W. Yu, “Variance Analysis For Nonlinear Systems”, PHD thesis, Queen's ...
  • CPC Control Group, University of Alberta, University of Alberta Computer ...
  • B. Huang, S. L. Shah, “Practical issues in multivariable feedback ...
  • نمایش کامل مراجع