Combining SVM with an efficient feature selection mechanism to predict the stock-market trend

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 304

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICAISV01_014

تاریخ نمایه سازی: 6 شهریور 1402

چکیده مقاله:

Support vector machine (SVM) is a popular classification method and selecting appropriate features and tuning parameters have a great impact on its efficiency. In this paper, SVM is utilized to predict the movement of stocks in the Iran market. First, a broad set of features including different important ratios and technical indicators and signals are gathered. Then, a combined approach based on particle swarm optimization (PSO) is developed as a feature selection and parameter tuning mechanism. A clustering method is suggested to generate the initial particles of PSO. Computational results over real datasets confirm the performance of our algorithm in comparison with other approaches. The accuracy of our algorithm over ۱۲ stocks is ۶۷.۵%, on average, while this number for other approaches are ۶۲.۲۵% and ۶۳.۶%.

نویسندگان

M. Pardakhti

Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran,

F. Hooshmand

Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran,