Using Densenet۱۲۱ to extract roads from satellite images

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 146

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-1_120

تاریخ نمایه سازی: 5 شهریور 1402

چکیده مقاله:

The most significant issue in remote sensing is the extraction of roads from very high-resolution satellite (VHR) photos. The authors of this research provide an effective Densenet۱۲۱ block that can understand relationships between global features. As a result, road segmentation is more precise due to the ability of each geographical version available as a pointer to other data that is collected. In the specific, our single model outperformed every other contemporary aggregation model that has been presented in the official Densenet۱۲۱, our suggested model offers a shorter training convergence time, fewer parameters, and fewer Giga floating-point operations per second (GFLOPs). The authors also provide empirical evaluations on how non-local blocks should be used appropriately for the base model. Theoretically, the applied methodology provided a DenseNet-۱۲۱ and an unpublished best alternative identification method DenseNet-۱۲۱, a really sizable dataset provided by the CNN model's training phase. Additionally, because the implemented architecture takes advantage of data augmentation, no custom data extraction method is necessary.

کلیدواژه ها:

Densenet۱۲۱ ، Road extraction ، image satellite ، convolutional neural networks (CNNs)

نویسندگان

Hussein Al-Iedane

Basra University for Oil and Gas, Basra, Iraq