Using Densenet۱۲۱ to extract roads from satellite images
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 146
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-14-1_120
تاریخ نمایه سازی: 5 شهریور 1402
چکیده مقاله:
The most significant issue in remote sensing is the extraction of roads from very high-resolution satellite (VHR) photos. The authors of this research provide an effective Densenet۱۲۱ block that can understand relationships between global features. As a result, road segmentation is more precise due to the ability of each geographical version available as a pointer to other data that is collected. In the specific, our single model outperformed every other contemporary aggregation model that has been presented in the official Densenet۱۲۱, our suggested model offers a shorter training convergence time, fewer parameters, and fewer Giga floating-point operations per second (GFLOPs). The authors also provide empirical evaluations on how non-local blocks should be used appropriately for the base model. Theoretically, the applied methodology provided a DenseNet-۱۲۱ and an unpublished best alternative identification method DenseNet-۱۲۱, a really sizable dataset provided by the CNN model's training phase. Additionally, because the implemented architecture takes advantage of data augmentation, no custom data extraction method is necessary.
کلیدواژه ها:
نویسندگان
Hussein Al-Iedane
Basra University for Oil and Gas, Basra, Iraq