Complexity analysis of interior-point methods yielding the best known iteration bound for semidefinite optimization

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 115

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-5_027

تاریخ نمایه سازی: 5 شهریور 1402

چکیده مقاله:

The purpose of this paper is to obtain new complexity results for solving the semidefinite optimization (SDO) problem. We define a new proximity function for the SDO by a new kernel function with an efficient logarithmic barrier term. Furthermore, we formulate an algorithm for the large and small-update primal-dual interior-point method (IPM) for the SDO. It is shown that the best result of iteration bounds for large-update methods and small-update methods can be achieved, namely \mathcal{O}\left(qn^{\frac{q+۱}{۲q}}\log \frac{n}{\epsilon }\right) \ for large-update and \mathcal{O}(q^{۲}\sqrt{n}\log \frac{n}{\epsilon }) for small-update methods, where q>۱. The analysis in this paper is new and different from the one using for LO. Several new tools and techniques are derived in this paper. Furthermore, numerical tests to investigate the behavior of the algorithm so as to be compared with other approaches.

نویسندگان

Derbal Louiza

LMFN, Fundamental and Numerical Mathematics Laboratory, Department of Mathematics, Faculty of Science, Ferhat Abbas University, Setif, Algeria

Kebbiche Zakia

LMFN, Fundamental and Numerical Mathematics Laboratory, Department of Mathematics, Faculty of Science, Ferhat Abbas University, Setif, Algeria

Bouafia Mousaab

LMAH, FR-CNRS-۳۳۳۵, ISCN, ۷۶۰۰ Le Havre, France, University of ۸ May ۱۹۴۵ Guelma. BP ۴۰۱, ۲۴۰۰۰ Guelma, Algeria