Examination of Image Schemas in Scientific and Literary Texts Within the Framework of Cognitive Semantics
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 215
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JLTR-3-3_004
تاریخ نمایه سازی: 4 شهریور 1402
چکیده مقاله:
The aim of this study is to examine and compare the image schemas in scientific and literary texts within the framework of cognitive linguistics. Image schemas are one of the key topics in fields such as philosophy, psychology, and linguistics. According to cognitive linguists, the importance of image schemas, as a part of language and thought, is that they, in terms of rudimentary embodied concepts, systematically provide the fundamental building blocks for more complex concepts. That makes their study inevitable in many fields. In this study, I examined Johnson’s basic image schemas (i.e., force, path, and containment) in scientific and literary texts, as two extremely different genres. I used qualitative, descriptive, and inferential methods in our examination. The results show that, despite their significant difference (p<.۰۵), all three schemas are used in both scientific and literary genres. The most frequent schemas in scientific and literary texts were containment schemas (۵۲%) and path schemas (۵۶%), respectively. There also was a significant difference between schematic (۹%) and non-schematic (۹۱%) sentences (p<.۰۵). I suggested that the observed difference between the two genres may be due to the fact that scientific concepts are more abstract, and the use of schemas facilitates their understanding.
کلیدواژه ها:
نویسندگان
Azadeh Shekarian Behzadi
Department of Language and Persian Literature, Shahid Bahonar University, Kerman, Iran
Akram Shekarian Behzadi
Department of Linguistics, Faculty of Iranology, Vali-e-Asr University, Rafsanjan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :