A Legendre Tau method for numerical solution of multi-order fractional mathematical model for COVID-۱۹ disease

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 116

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-11-4_013

تاریخ نمایه سازی: 1 شهریور 1402

چکیده مقاله:

In this paper, we describe a spectral Tau approach for approximating the solutions of a system of multi-order fractional differential equations which resulted from coronavirus disease mathematical modeling (COVID-۱۹). The non-singular fractional derivative with a Mittag-Leffler kernel serves as the foundation for the fractional derivatives. Also, the operational matrix of fractional differentiation on the domain [۰, a] is presented. Then, the convergence analysis of the proposed approximate approach is established and the error bounds are determined in a weighted L۲ norm. Finally, by applying the Tau method, some of the important parameters in the model’s impact on the dynamics of the disease are graphically displayed for various values of the non-integer order of the ABC-derivative.

کلیدواژه ها:

Multi-Order Fractional differential equation ، Mathematical Model of COVID-۱۹ ، Fractional ABC-derivative ، Mittag-Leffler Kernel ، Error analysis

نویسندگان

Marjan Bidarian

Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran.

Habibollah Saeedi

Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

Mohammad Reza Baloochshahryari

Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. A. Aba Oud, A. Ali, H. Alrabaiah, S. Ullah, ...
  • T. Abdeljawad and D. Baleanu, Integration by parts and its ...
  • I. Ahmed, G. U. Modu, A. Yusuf, P. Kumam, and ...
  • B. S. T. Alkahtani, Chu´as circuit model with Atangana-Baleanu derivative ...
  • E. S. Allman and J. A. Rhodes, Mathematical models in ...
  • R. M. Anderson and R. M. May, Helminth infections of ...
  • A. A. M, Arafa, I. M. Hanafy, and M. I. ...
  • A. Atangana, On the new fractional derivative and application to ...
  • A. Atangana and D. Baleanu, New fractional derivatives with nonlocal ...
  • F. Brauer and C. Castillo-Ch´avez, Mathematical Models in Population Biology ...
  • C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. ...
  • K. Diethelm, The Analysis of Fractional Differential Equations, Berlin Heidelberg, ...
  • K. Diethelm, N. J. Ford, A. D. Freed, and Y. ...
  • X. L. Ding and Y. L. Jiang, Waveform relaxation method ...
  • J. Djordjevic, C. J. Silva, and D. F. M. Torres, ...
  • L. Edelstein-Keshet, Mathematical models in biology, SIAM, ۲۰۰۵ ...
  • F. Ghanbari, K. Ghanbari, and P. Mokhtary, Generalized Jacobi-Galerkin method ...
  • F. Ghanbari, K. Ghanbari, and P. Mokhtary, High-order Legendre collocation ...
  • F. Ghoreishi and M. Hadizadeh, Numerical computation of the Tau ...
  • J. F. G´omez, L. Torres, and R. F. Escobar, Fractional ...
  • J. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for ...
  • M. A. Khan and A. Atangana, Modeling the dynamics of ...
  • S. Kumar, J. Cao, and M. Abdel-Aty, A novel mathematical ...
  • B. P. Moghaddam, J. A. T. Machado, and A. Babaei, ...
  • F. Nda¨ırou, I. Area, J. J. Nieto, and D. F. ...
  • F. Nda¨ırou, I. Area, J. J. Nieto, C. J. Silva, ...
  • K. Parand, H. Yousefi, M. Fotouhifar, M. Delkhosh, and M. ...
  • K. Parand, Z. Kalantari, and M. Delkhosh, Quasilinearization-Lagrangian method to ...
  • K. Parand, F. Mirahmadian, and M. Delkhosh, The pseudospectral Legendre ...
  • I. Podlubny, Fractional Differential Equations, New York, Academic Press, ۱۹۹۹ ...
  • A. Rachah and D. F. M. Torres, Dynamics and optimal ...
  • P. Rahimkhani and Y. Ordokhani, The bivariate Mu¨ntz wavelets composite ...
  • P. Rahimkhani and Y. Ordokhani, Approximate solution of nonlinear fractional ...
  • P. Rahimkhani and Y. Ordokhani, Numerical solution a class of ...
  • P. Rahimkhani and Y. Ordokhani, A numerical scheme based on ...
  • P. Riyapan, S. E. Shuaib, and A. Intarasit, A Mathematical ...
  • J. Shen, T. Tang, and L. L. Wang, Spectral Methods ...
  • S. Wang, W. Tang, L. Xiong, M. Fang, B. Zhang, ...
  • D. Yan and H. Cao, The global dynamics for an ...
  • نمایش کامل مراجع