Asymptotic behavior of a radical quadratic functional equation in quasi-β-Banach spaces
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 99
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-14-3_010
تاریخ نمایه سازی: 26 مرداد 1402
چکیده مقاله:
Let \mathbb{R} be the set of real numbers and \big(Y,\|\cdot\|\big) be a real quasi-\beta-Banach space. In this paper, we prove the Hyers-Ulam stability on a restricted domain in quasi-\beta-spaces for the following two radical functional equationsf\big(\sqrt{x^{۲}+y^{۲}}\big)=f(x)+f(y)and f\big(\sqrt{x^{۲}+y^{۲}}\big)=g(x)+f(y)where f,g:\mathbb{R}\to Y. Also, we discuss an asymptotic behavior for these equations.
کلیدواژه ها:
نویسندگان
Muaadh Almahalebi
Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
Abdellatif Chahbi
Department of Mathematics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco