Convergence analysis and approximation of fixed point of multivalued generalized \alpha-nonexpansive mapping in uniformly convex Banach space
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 141
فایل این مقاله در 30 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-14-2_005
تاریخ نمایه سازی: 26 مرداد 1402
چکیده مقاله:
Recently, the authors introduce a four-step iterative algorithm called the UD-iteration scheme (Udofia and Igbokwe [۳۵]). Here we introduce the multivalued version of the UD-iteration scheme and show that it can be used to approximate the fixed points of multivalued contraction and multivalued generalized \alpha-nonexpansive mappings. we prove strong and weak convergence of the iteration scheme to the fixed point of multivalued generalized \alpha-nonexpansive mapping. We also prove that the scheme is \varUpsilon-stable and Data dependent. Convergence analysis shows that the multivalued UD-iteration scheme has a faster rate of convergence for multivalued contraction and multivalued generalized \alpha-nonexpansive mappings than some well-known existing iteration schemes in the literature.
کلیدواژه ها:
uniformly convex Banach space ، Multivalued generalized \alpha-nonexpansive Mapping ، convergence ، data dependence ، stability
نویسندگان
Unwana Udofia
Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
Donatus Igbokwe
Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria