Convergence analysis and approximation of fixed point of multivalued generalized \alpha-nonexpansive mapping in uniformly convex Banach space

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 141

فایل این مقاله در 30 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-2_005

تاریخ نمایه سازی: 26 مرداد 1402

چکیده مقاله:

Recently, the authors introduce a four-step iterative algorithm called the UD-iteration scheme (Udofia and Igbokwe [۳۵]). Here we introduce the multivalued version of the UD-iteration scheme and show that it can be used to approximate the fixed points of multivalued contraction and multivalued generalized \alpha-nonexpansive mappings. we prove strong and weak convergence of the iteration scheme to the fixed point of multivalued generalized \alpha-nonexpansive mapping. We also prove that the scheme is \varUpsilon-stable and Data dependent. Convergence analysis shows that the multivalued UD-iteration scheme has a faster rate of convergence for multivalued contraction and multivalued generalized \alpha-nonexpansive mappings than some well-known existing iteration schemes in the literature.

کلیدواژه ها:

uniformly convex Banach space ، Multivalued generalized \alpha-nonexpansive Mapping ، convergence ، data dependence ، stability

نویسندگان

Unwana Udofia

Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria

Donatus Igbokwe

Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria