Segmenting the Lesion Area of Brain Tumor using Convolutional Neural Networks and Fuzzy K-Means Clustering

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 152

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-36-8_015

تاریخ نمایه سازی: 10 مرداد 1402

چکیده مقاله:

Brain tumor Segmentation is one of the most crucial methods of medical image processing. Non-automatic segmentations are broadly used in clinical diagnosis and medication. However, this kind of segmentation does not have accuracy in medical images, especially in terms of brain tumors, and it provides a low level of reliability. The primary objective of this paper is to develop a methodology for brain tumor segmentation. In this paper, a combination of Convolutional  Neural Network and Fuzzy K-means algorithm has been presented to segment the lesion area of brain tumor. It contains three phases, Image preprocessing to reduce computational complexity, Attribute extraction and selection and Segmentation. At first, the database images are pre-processed using adaptive filters and wavelet transform in order to recover the image from the noise state and reduce the computational complexity. Then feature extraction is performed by the proposed deep neural network. Finally, it is processed through the Fuzzy K-Means algorithm to segment the tumor region separately. The innovation of this article is related to the implementation of deep neural network with optimal parameters, identification of related features and removal of unrelated and repetitive features with the aim of observing a subset of features that describe the problem well and with minimal reduction in efficiency. This results in reduced feature sets, storage of data collection resources during operation, and overall data reduction to limit storage requirements. This proposed segmentation approach has been verified on BRATS dataset and produces the accuracy of ۹۸.۶۴%, sensitivity of ۱۰۰% specificity of ۹۹%.

نویسندگان

S. Fooladi

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

H. Farsi

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

S. Mohamadzadeh

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Yogananda, C.G.B., Shah, B.R., Vejdani-Jahromi, M., Nalawade, S.S., Murugesan, G.K., ...
  • Soomro, T.A., Zheng, L., Afifi, A.J., Ali, A., Soomro, S., ...
  • Liu, Z., Tong, L., Chen, L., Jiang, Z., Zhou, F., ...
  • Magadza, T. and Viriri, S., "Deep learning for brain tumor ...
  • Somasundaram, S. and Gobinath, R., "Current trends on deep learning ...
  • Biratu, E.S., Schwenker, F., Ayano, Y.M. and Debelee, T.G., "A ...
  • Devunooru, S., Alsadoon, A., Chandana, P. and Beg, A., "Deep ...
  • Zhang, W., Wu, Y., Yang, B., Hu, S., Wu, L. ...
  • Karimi, D. and Salcudean, S.E., "Reducing the hausdorff distance in ...
  • Arabi, H., Dowling, J.A., Burgos, N., Han, X., Greer, P.B., ...
  • Arabi, H., Zeng, G., Zheng, G. and Zaidi, H., "Novel ...
  • Bahrami, A., Karimian, A., Fatemizadeh, E., Arabi, H. and Zaidi, ...
  • Angulakshmi, M. and Deepa, M., "A review on deep learning ...
  • Isensee, F., Kickingereder, P., Wick, W., Bendszus, M. and Maier-Hein, ...
  • Toğaçar, M., Cömert, Z. and Ergen, B., "Classification of brain ...
  • Amin, J., Sharif, M., Gul, N., Raza, M., Anjum, M.A., ...
  • Islam, R., Imran, S., Ashikuzzaman, M. and Khan, M.M.A., "Detection ...
  • Zhang, W., Yang, G., Huang, H., Yang, W., Xu, X., ...
  • Hasan, S.K. and Linte, C.A., "A modified u-net convolutional network ...
  • Rajan, P. and Sundar, C., "Brain tumor detection and segmentation ...
  • Begum, S.S. and Lakshmi, D.R., "Combining optimal wavelet statistical texture ...
  • Thaha, M.M., Kumar, K.P.M., Murugan, B., Dhanasekeran, S., Vijayakarthick, P. ...
  • Gao, X. and Qian, Y., "Segmentation of brain lesions from ...
  • Emadi, M., Jafarian Dehkordi, Z. and Iranpour Mobarakeh, M., "Improving ...
  • Azimi, B., Rashno, A. and Fadaei, S., "Fully convolutional networks ...
  • Khan, A.R., Khan, S., Harouni, M., Abbasi, R., Iqbal, S. ...
  • Rai, H.M., Chatterjee, K. and Dashkevich, S., "Automatic and accurate ...
  • Engineering, J.O.H., "Retracted: Brain tumor detection and classification by mri ...
  • Obeidavi, M.R. and Maghooli, K., "Tumor detection in brain mri ...
  • Dubey, S.R., Singh, S.K. and Chaudhuri, B.B., "Activation functions in ...
  • Clough, J.R., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A. ...
  • Balasubramanian, K. and Ananthamoorthy, N., "Correlation-based feature selection using bio-inspired ...
  • Nawaz, M., Mehmood, Z., Nazir, T., Naqvi, R.A., Rehman, A., ...
  • Musallam, A.S., Sherif, A.S. and Hussein, M.K., "A new convolutional ...
  • نمایش کامل مراجع