Time to Kidneys Failure Modeling in the Patients at Adama Hospital Medical College: Application of Copula Model

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 143

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JRHSU-22-2_004

تاریخ نمایه سازی: 28 تیر 1402

چکیده مقاله:

Background: Kidney failure is a common public health problem around the world. The vast majority of kidney failure cases in Sub-Saharan African nations, including Ethiopia, go undetected and untreated, resulting in practically certain mortality cases. This study was aimed primarily to model the time to (right and left) kidneys failure in the patients at Adama Hospital Medical College using the copula model. Study design: A retrospective cohort study. Methods: The copula model was used to examine join time to the right and left kidneys failure in the patients by specifying the dependence between the failure times. We employed Weibull, Gompertz, and Log-logistic marginal baseline distributions with Clayton, Gumbel, and Joe Archimedean copula families. Results: This research comprised a total of ۴۳۱ patients, out of which, ۱۷۰ (۳۹.۴%) of the total patients failed at least one kidney during the follow-up period. Factors such as sex, age, family history of kidney disease, diabetes mellitus, hypertension, and obesity were found to be the most predictive variables for kidney failure in the patients. There was a ۴۱ percent correlation between the patients’ time to the right and left kidneys failure. Conclusion: The patients’ kidney failure risk factors included being a male, older adult, obese, hypertensive, diabetic and also having a family history of kidney disease. The dependence between the patient’s time to the right and left kidneys failure was strong. The best statistical model for describing the kidney failure datasets was the log-logistic-Clayton Archimedean copula model.

نویسندگان

Firomsa Shewa Gart

MSc, Department of Statistics, Assosa University, Assosa, Ethiopia

Selamawit Endale

MSc, Department of Statistics, Assosa University, Assosa, Ethiopia

Gurmessa Nugussu

MSc, Department of Statistics, Jimma University, Jimma, Ethiopia

Jaleta Abdisa

MSc, Department of Statistics, Jimma University, Jimma, Ethiopia