MoGaL: Novel Movie Graph Construction by Applying LDA on Subtitle

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 246

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-11-2_005

تاریخ نمایه سازی: 27 تیر 1402

چکیده مقاله:

Graph representation of data can better define relationships among data components and thus provide better and richer analysis. So far, movies have been represented in graphs many times using different features for clustering, genre prediction, and even for use in recommender systems. In constructing movie graphs, little attention has been paid to their textual features such as subtitles, while they contain the entire content of the movie and there is a lot of hidden information in them. So, in this paper, we propose a method called MoGaL to construct movie graph using LDA on subtitles. In this method, each node is a movie and each edge represents the novel relationship discovered by MoGaL among two associated movies. First, we extracted the important topics of the movies using LDA on their subtitles. Then, we visualized the relationship between the movies in a graph, using the cosine similarity. Finally, we evaluated the proposed method with respect to measures genre homophily and genre entropy. MoGaL succeeded to outperforms the baseline method significantly in these measures. Accordingly, our empirical results indicate that movie subtitles could be considered a rich source of informative information for various movie analysis tasks.

نویسندگان

Mohammad Nazari

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

Hossein Rahmani

School of Computer engineering, Iran University of Science and Technology, Tehran, Iran.

Dadfar Momeni

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

Motahare Nasiri

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • ‎ J. Luhmann, M. Burghardt, and J. Tiepmar, "SubRosa: Determining ...
  • ‎ K. Bougiatiotis and T. Giannakopoulos, "Content representation and similarity ...
  • ‎ M. M. Hasan, S. T. Dip, T. M. Kamruzzaman, ...
  • ‎ Y. Tang, J. Yu, C. Li, and J. Fan, ...
  • ‎ H. Koosha, Z. Ghorbani and R. Nikfetrat, "A Clustering-Classification ...
  • ‎ J. B. Lee, R. A. Rossi, S. Kim, N. ...
  • ‎ B. Rao and A. Mitra, "Graph Mining and Its ...
  • ‎ D. Sulieman, M. Malek, H. Kadima, and D. Laurent, ...
  • ‎ M. Zhang and Y. Chen, "Inductive matrix completion based ...
  • ‎ S. Eden, A. Livne, O. Sar Shalom, B. Shapira, ...
  • ‎ C. Zhou, H. Chen, J. Zhang, Q. Li, D. ...
  • ‎ A. Ahmed, V. Batagelj, X. Fu, S. H. Hong, ...
  • ‎ S. Eden, A. Livne, O. Sar Shalom, B. Shapira, ...
  • ‎ C. Lee, D. Han, K. Han, and M. Yi, ...
  • ‎ M. Goyani and N. Chaurasiya, "A review of movie ...
  • ‎ D. M. Blei, A. Y. Ng, and M. I. ...
  • ‎ S. B. Park, K. J. Oh, and G. S. ...
  • ‎ A. Spitz and E. Á. Horvát, "Measuring long-term impact ...
  • ‎ T. Bogers, "Movie recommendation using random walks over the ...
  • ‎ Z. Z. Darban and M. H. Valipour, "GHRS: Graph-based ...
  • K. Bougiatiotis and T. Giannakopoulos, "Enhanced movie content similarity based ...
  • "IMDb Datasets," IMDb, ۱۶ ۰۵ ۲۰۲۱. [Online]. Available: https://www.imdb.com/interfaces/. [Accessed: ...
  • M. Honnibal and I. Montani, "spaCy ۲: Natural language understanding ...
  • A. Grover and J. Leskovec, "node۲vec: Scalable feature learning for ...
  • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and ...
  • نمایش کامل مراجع