Nonlinear time series analysis: Application to cardiac diseases
محل انتشار: دوازدهمین کنفرانس مهندسی پزشکی ایران
سال انتشار: 1384
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,279
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICBME12_056
تاریخ نمایه سازی: 25 آبان 1391
چکیده مقاله:
The analysis of ECG signals with methods derived from chaos theory is a potential toolto classify different heart behaviors and can help to get insights on the heart dynamics.The main purpose of the present work are to implement and validate the correlationdimension (D2) method for HRV analysis and to investigate whether it is possible todistinguish between the HRV-signals of healthy subjects and heart diseases subjects onlybased on the D(2) or whether the Largest Lyapunov Exponent (LLE) can be used for thisaim. We used D(2) and LLE methods from nonlinear time series analysis to characterizehuman ECG signals obtained from the commercially available MIT-BIH ECG arrhythmiadatabase. Three groups of ECG signals have been considered: the ECGs of Normalsubjects and ECGs of subjects with Atrial Fibrillation (AF) and with PrematureVentricular Contraction (PVC). The correlation dimension (D(2)) method is related tochaos theory and it used to quantify heart rate variability (HRV). The D(2) is a featuredescribing character of signals and often used for classification of signals (ECG).Lyapunov exponents measure the average local rate of divergence of neighboringtrajectories in phase space embedding and quantify the sensitivity of the system to initialconditions, which is an important feature of chaotic systems. A positive LyapunovExponents can be taken as a definition of chaos. D(2) and Largest Lyapunov exponent(LLE) are increasingly used to classify systems (say for diagnostics purposes). ECG timeseries were classified according to results obtained from computation of D(2) and LLE. Ourresults confirm the previous studies, which indicate that technique from nonlineardynamical systems theory should help us understand the mechanism underlying cardiacdiseases and allow one to distinguish between different groups of patients with moreconfidence than the standard methods for time series processing accepted in cardiology.Keywords: Nonlinear Dynamics, Time Series Analysis, Chaos, Correlation Dimension,Lyapunov Exponent, Heart Rate Variability.
کلیدواژه ها:
نویسندگان
S Behnia
Department of Physics, IAU, Ourmia, Iran.
F Ghalichi
Department of Biomedical Engineering, Sahand University of Technology, Tabriz-Iran.
A Akhshani
Department of Physics, IAU, Ourmia, Iran.
H Mahmodi
Department of Physics, IAU, Ourmia, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :