Customer Behavior Analysis using Wild Horse Optimization Algorithm
محل انتشار: فصلنامه ادوات مخابراتی، دوره: 12، شماره: 2
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 284
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TDMA-12-2_003
تاریخ نمایه سازی: 31 خرداد 1402
چکیده مقاله:
One of the areas in which businesses use artificial intelligence techniques is the analysis and prediction of customer behavior. It is important for a business to predict the future behavior of its customers. In this paper, a customer behavior model using wild horse optimization algorithm is proposed. In the first step, K-Means algorithm is used to classify based on the features extracted from the time series, and then in the second step, wild horse optimization algorithm is used to estimate customer behavior. Three dataset including, the grocery store dataset, the household appliances dataset, and the supermarket dataset are used in the simulation. The best clusters count for the grocery store dataset, the household appliances dataset, and the supermarket dataset are obtained ۵, ۴, and ۴, respectively. The simulation results indicate that this proposed method is obtained the lowest prediction error in three simulated datasets and is superior to other counterparts.
کلیدواژه ها:
نویسندگان
Raheleh Sharifi
Department of Computer Engineering, Majlesi Branch, Islamic Azad University, Isfahan, Iran
Mohammadreza Ramezanpour
Department of Computer Engineering, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :