Decline of Auditor's Financial Bias in Decision making by Professionalism in Auditing: Rough Set Analysis
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 147
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AMFA-8-2_008
تاریخ نمایه سازی: 30 خرداد 1402
چکیده مقاله:
The purpose of the research Decline of Auditors' Financial Bias in Decision making by Professionalism in Auditing: Rough Set Analysis. The research approach is of inductive-deductive type in terms of the data collection meth-od, because it was first determined based on the content analysis of the com-ponents and propositions related to the professional characteristics, then it was tried to confirm or delete the propositions based on the Delphi analysis. This research by participating ۱۴ individuals of the audit partners with the academic degrees over a one-year period, ۲۰۱۸-۲۰۱۹. The results According to the formation of decision making matrix, the results showed that both propositions, the perceptual error of failure to separate the context from con-tent as the Halo bias and the perceptual error of the experience of fraud de-tection in the financial statement as memory bias were determined as the most influential perceptual errors in the audit profession in Iran. In addition, according to gray vikor theory analysis, it was found that the component of the audit's professional maturity was selected as the most important priority and the most effective feature for reducing the audit perceptual bias.
کلیدواژه ها:
نویسندگان
Jamal Jafari chashmi
Department of Accounting, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Mohammadreza Abdoli
Department of Accounting, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Hasan Valiyan
Department of Accounting, Shahrood Branch, Islamic Azad University, Shahrood, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :