Study on the Erosion Characteristics of Non-spherical Particles in Liquid-solid Two-phase Flow

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 128

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-16-8_011

تاریخ نمایه سازی: 27 خرداد 1402

چکیده مقاله:

Elbow erosion, defined as wall thinning due to the continuous interactions between solid particles and surface, is a common phenomenon in catalyst addition/withdrawal pipeline systems used in residual oil hydrogenation units. This form of erosion can seriously affect the reliable pipeline operation. The present paper describes the construction of realistic cylindrical catalyst particles using the multi-sphere clump method and computational fluid dynamics/discrete element model simulations to study the erosion of pipe walls under different inlet velocities and particle aspect ratios. An optical shooting experiment is carried out to ensure the accuracy of the calculation method, and the model performance is compared using several existing drag models. The results show that the drag model of Haider & Levenspiel is more accurate than the others in revealing the actual cylindrical particle flow. A higher inlet velocity is observed to increase the kinetic energy of the particles and affect their spatial distribution. Specifically, when the Stokes number is greater than ۱۱۳.۷, the position of the maximum erosion rate shifts from the elbow’s outer wall to the inner wall. Cumulative contact energy is introduced to quantify two different types of particle-wall contacts. With a growing particle aspect ratio, the proportion of tangential energy gradually increases, which indicates that sliding is the main contact mode. The results presented in this paper provide a reference for engineering erosion calculations.

کلیدواژه ها:

Elbow CFD ، DEM Drag model Stokes number Slide

نویسندگان

H. Z. Jin

Institute of Flow-Induced Corrosion, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, ۳۱۰۰۱۸, China

Z. Y. Liao

Institute of Flow-Induced Corrosion, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, ۳۱۰۰۱۸, China

J. F. Zhou

Hangzhou Special Equipment Inspection and Research Institute, Hangzhou ۳۱۰۰۵۱, China

X. F. Liu

Institute of Flow-Induced Corrosion, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, ۳۱۰۰۱۸, China

H. C. Yao

Institute of Flow-Induced Corrosion, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, ۳۱۰۰۱۸, China

C. Wang

Institute of Flow-Induced Corrosion, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, ۳۱۰۰۱۸, China

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Adedeji, O. E., & Duarte, C. R. (۲۰۲۰). Prediction of ...
  • Ali, H. M. (۲۰۲۲). Phase change materials based thermal energy ...
  • Jing, J., Xiao, F., & Yang, L. (۲۰۱۸). Measurements of ...
  • نمایش کامل مراجع