ArmanTTS single-speaker Persian dataset
محل انتشار: اولین کنفرانس بین المللی و ششمین کنفرانس ملی کامپیوتر، فناوری اطلاعات و کاربردهای هوش مصنوعی
سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 187
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CEITCONF06_046
تاریخ نمایه سازی: 26 خرداد 1402
چکیده مقاله:
TTS, or text-to-speech, is a complicated process thatcan be accomplished through appropriate modeling using deeplearning methods. In order to implement deep learning models, asuitable dataset is required. Since there is a scarce amount ofwork done in this field for the Persian language, this paper willintroduce the single speaker dataset: ArmanTTS. We comparedthe characteristics of this dataset with those of various prevalentdatasets to prove that ArmanTTS meets the necessary standardsfor teaching a Persian text-to-speech conversion model. We alsocombined the Tacotron ۲ and HiFi GAN to design a model thatcan receive phonemes as input, with the output being thecorresponding speech. ۴.۰ value of MOS was obtained from realspeech, ۳.۸۷ value was obtained by the vocoder prediction and۲.۹۸ value was reached with the synthetic speech generated bythe TTS model.
کلیدواژه ها:
نویسندگان
Mohammd Hasan Shamgholi
MSc StudentSchool of Computer EngineeringIran University of Science andTechnologyTehran, Iran
Vahid Saeedi
MSc GraduateSchool of Computer EngineeringIran University of Science andTechnologyTehran, Iran
Javad Peymanfard
PhD CandidateSchool of Computer EngineeringIran University of Science andTechnologyTehran, Iran
Leila Alhabib
BSc StudentSchool of Computer EngineeringAmirkabir University of TechnologyTehran, Iran
Hossein Zeinali
Assistant ProfessorSchool of Computer EngineeringAmirkabir University of TechnologyTehran, Iran