Implementation of EM algorithm based on non-precise observations

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 139

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_KJMMRC-12-2_035

تاریخ نمایه سازی: 10 خرداد 1402

چکیده مقاله:

The EM algorithm is a powerful tool and generic useful device in a variety of problems for maximum likelihood estimation with incomplete data which usually appears in practice. Here, the term ``incomplete" means a general state and in different situations it can mean different meanings, such as lost data, open source data, censored observations, etc. This paper introduces an application of the EM algorithm in which the meaning of ``incomplete" data is non-precise or fuzzy observations. The proposed approach in this paper for estimating an unknown parameter in the parametric statistical model by maximizing the likelihood function based on fuzzy observations. Meanwhile, this article presents a case study in the electronics industry, which is an extension of a well-known example used in introductions to the EM algorithm and focuses on the applicability of the algorithm in a fuzzy environment. This paper can be useful for graduate students to understand the subject in fuzzy environment and moreover to use the EM algorithm in more complex examples.

نویسندگان

Abbas Parchami

Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • G.M. Cordeiro, E.M.M. Ortega, and A.J. Lemonte, The exponential{Weibull lifetime ...
  • A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from ...
  • T. Denoeux, Maximum likelihood estimation from fuzzy data using the ...
  • B. Flury, and A. Zoppe, Exercises in EM, The American ...
  • K. Knight, Mathematical Statistics, Chapman & Hall, New York, ۲۰۰۰ ...
  • A. Parchami, EM.Fuzzy: EM algorithm for maximum likelihood estimation by ...
  • R. Pourmousa, On truncated measures of income inequality from a ...
  • L.A. Zadeh, Probability measures of fuzzy events, Journal of Mathematical ...
  • نمایش کامل مراجع