Statistical Approach of Determining the Effect of Cenosphere on the Tribological Behaviour of Jute Reinforced Polymer Based Composite
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 138
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MACS-10-1_019
تاریخ نمایه سازی: 9 اردیبهشت 1402
چکیده مقاله:
The current work involves the development of short jute fiber-reinforced polymer matrix composites (PMC) filled with Cenosphere. The short jute fibers were alkali-treated, and proposed composites with both untreated and alkali-treated fibers were prepared. Both kinds of composites have had their erosion wear behavior investigated. For the erosion investigation, an air jet-type test rig was used, and Taguchi's orthogonal arrays were used in the design of trials. The Taguchi technique was used to find the best parameter settings for minimizing erosion rate. The effect of input factors (angle of impact, velocity of impact, and filler percentage) on the erosion resistance of proposed composites was evaluated and statistically analyzed using ANOVA. The size of the erodent, impact velocity, impingement angle, and filler content all have a substantial impact on the wear rate of both types of composites, according to the findings. It is found that velocity of impact (p =۰.۰۸۹) and filler (p =۰.۲۴۶) have a significant impact on erosion wear rate for group A composites and standoff distance (p= ۰.۱۹۴) and filler content (p =۰.۳۹۱) had a significant impact on erosion rate for group B composites. With the addition of the Cenosphere, the erosion behaviour of the samples was significantly improved. The novelty of the present work lies in harnessing an industrial wast cenosphere into a useful filler for PMC in tribological applications.
کلیدواژه ها:
نویسندگان
Vishwas Mahesh
Department of Industrial Engineering and Management, Siddaganga Institute of Technology, TUmkur, Karnataka, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :