Improving the speed and accuracy of arrhythmia classification based on morphological features of ECG signal

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 95

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TDMA-9-4_001

تاریخ نمایه سازی: 29 فروردین 1402

چکیده مقاله:

ECG cardiac signals play a crucial role in determining heart disease. Somehow, by knowing the heart rate on the ECG, one can distinguish the type of arrhythmia and the type of disease. Arrhythmias are a type of heart disease that affects the normal functioning of the heart. The electrical activity of the heart is shown at the peaks of P, QRS, T, and the ST and PR sections. In this study, an effective method for identifying cardiac arrhythmias based on morphological features is presented. The extracted features are classified using SVM and KNN classification and random forest RF. Accuracy, sensitivity, positive predictive rate, negative predictive rate as well as execution time were used to evaluate the proposed method. The results show the superiority of the proposed method.

نویسندگان

Kamran Dehgany habib abadi

Department of electrical Engineering, Islamic Azad University, Najaf abad Branch, Isfahan, Iran

Mohammad Yousefi

Najafabad Branch, Islamic Azad University

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • G. Mardanian, N. Behzadfar, “A new method for detection of ...
  • F. Shyasi, M.R. Yousefi, “The study of pain types, its ...
  • J. M. Rantanen, S. Riahi, E. B. Schmidt, M. B. ...
  • S. K. Pandey, V. R. Sodum, R. R. Janghel, and ...
  • A. Tamizi, M. Ataei, M. Yazdchi, “Improving Diagnosis of Heart ...
  • S. Moein, Z. Beheshti, “Improvement of ECG Signal Noise Removal ...
  • C.-H. Lin, "Frequency-domain features for ECG beat discrimination using grey ...
  • R. J. Martis, U. R. Acharya, C. M. Lim, and ...
  • R. G. Afkhami, G. Azarnia, and M. A. Tinati, "Cardiac ...
  • S. Palaniappan and R. Awang, "Intelligent heart disease prediction system ...
  • A. Rajkumar and G. S. Reena, "Diagnosis of heartdisease using ...
  • M. A. Ma'Sum, W. Jatmiko, and H. Suhartanto, "Enhanced tele ...
  • H. Lassoued and R. Ketata, "ECG Decision Support System based ...
  • H. Li, D. Yuan, X. Ma, D. Cui, and L. ...
  • J. O’Brien, "Using Hidden Markov Models and Spark to Mine ...
  • F. Celesti et al., "Big data analytics in genomics: The ...
  • F. I. Alarsan and M. Younes, "Analysis and classification of ...
  • R. U. Khan, T. Hussain, H. Quddus, A. Haider, A. ...
  • M. O. G. Nayeem, M. N. Wan, and M. K. ...
  • J. Huang, B. Chen, B. Yao, and W. He, "ECG ...
  • H. He, Y. Tan, and J. Xing, "Unsupervised classification of ...
  • A. Diker, E. Avci, E. Tanyildizi, and M. Gedikpinar, "A ...
  • N. M. M. Nascimento, L. B. Marinho, S. A. Peixoto, ...
  • M. Thiyagaraj and G. Suseendran, "Enhanced Prediction of Heart Disease ...
  • B. A. Tama, S. Im, and S. Lee, "Improving an ...
  • A. Baccouche, B. Garcia-Zapirain, C. Castillo Olea, and A. Elmaghraby, ...
  • A. Dutta, T. Batabyal, M. Basu, and S. T. Acton, ...
  • A. Paithane and D. Bormane, "Electrocardiogram signal analysis using empirical ...
  • M. B. Hossain, S. K. Bashar, A. J. Walkey, D. ...
  • M. Murugappan, L. Murugesan, S. Jerritta, and H. Adeli, "Sudden ...
  • Y. Ji, S. Zhang, and W. Xiao, "Electrocardiogram classification based ...
  • J. F. Saenz-Cogollo and M. Agelli, "Investigating Feature Selection and ...
  • نمایش کامل مراجع