Fuzzy Farthest Points and Fuzzy Best Approximation Points in Fuzzy Normed Spaces
محل انتشار: مجله نظریه تقریب و کاربرد، دوره: 13، شماره: 1
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 236
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSJI-13-1_002
تاریخ نمایه سازی: 28 فروردین 1402
چکیده مقاله:
In this paper we define fuzzy farthest points, fuzzy best approximation points and farthest orthogonality in fuzzy normed spaces and we will find some results. We prove some existence theorems, also we consider fuzzy Hilbert and show every nonempty closed and convex subset of a fuzzy Hilbert space has an unique fuzzy best approximation.It is well know that the conception of fuzzy sets, firstly defined by Zadeh in ۱۹۶۵. Fuzzy set theory provides us with a framework which is wider than that of classical set theory. Various mathematical structures, whose features emphasize the effects of ordered structure, can be developed on the theory. The theory of fuzzy sets has become an area of active research for the last forty years. On the other hand, the notion of fuzzyness has a wide application in many areas of science and engineering, chaos control, nonlinear dynamical systems, etc. In physics, for example, the fuzzy structure of space time is followed by the fat that in strong quantum gravity regime space time points are determined in a fuzzy manner.
کلیدواژه ها:
Normed fuzzy space ، Fuzzy farthest orthogonality ، Fuzzy best approximation points ، Fuzzy farthest points
نویسندگان
Hamid Mazaheri Tehrani
Faculty of Mathematics, Yazd University, Yazd, Iran
S. M Mouavi Shams Abad
Faculty of Mathematics, Vali-e-asr University of Rafsenjan, Rafsenjan, Iran
M. A Dehghan
Faculty of Mathematics, Vali-e-asr University of Rafsenjan, Rafsenjan, Iran
Z. Bizhanzadeh
Faculty of Mathematics, Yazd University, Yazd, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :