A novel scheme for SMCH equation with two different approaches
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 133
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CMDE-11-2_005
تاریخ نمایه سازی: 28 فروردین 1402
چکیده مقاله:
In this study, the unified and improved F-expansion methods are applied to derive exact traveling wave solutions of the simplified modified Camassa-Holm (SMCH) equation. The current methods can calculate all branches of solutions at the same time, even if several solutions are quite near and therefore impossible to identify via numerical methods. All obtained solutions are given by hyperbolic, trigonometric, and rational function solutions which obtained solutions are useful for real-life problems in fluid dynamics, optical fibers, plasma physics and so on. The two-dimensional (۲D) and three-dimensional (۳D) graphs of the obtained solutions are plotted. Finally, we can state that these strategies are extremely successful, dependable, and simple. These ideas might potentially be applied to many nonlinear evolution models in mathematics and physics.
کلیدواژه ها:
SMCH equation ، the improved F-expansion method ، the unified method ، Symbolic computation ، Exact solution ، solitary wave
نویسندگان
Arzu Akbulut
Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey.
Rayhanul Islam
Department of Mathematics, Pabna University of Science and Technology, Pabna-Bangladesh.
Yiasir Arafat
Department of Mathematics, Pabna University of Science and Technology, Pabna-Bangladesh.
Filiz Taşcan
Faculty of Arts and Science, Department of Mathematics and Computer, Eski¸sehir Osmangazi University, Eskisehir, Turkey.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :