A novel scheme for SMCH equation with two different approaches

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 133

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-11-2_005

تاریخ نمایه سازی: 28 فروردین 1402

چکیده مقاله:

In this study, the unified and improved F-expansion methods are applied to derive exact traveling wave solutions of the simplified modified Camassa-Holm (SMCH) equation. The current methods can calculate all branches of solutions at the same time, even if several solutions are quite near and therefore impossible to identify via numerical methods. All obtained solutions are given by hyperbolic, trigonometric, and rational function solutions which obtained solutions are useful for real-life problems in fluid dynamics, optical fibers, plasma physics and so on. The two-dimensional (۲D) and three-dimensional (۳D) graphs of the obtained solutions are plotted. Finally, we can state that these strategies are extremely successful, dependable, and simple. These ideas might potentially be applied to many nonlinear evolution models in mathematics and physics.

کلیدواژه ها:

نویسندگان

Arzu Akbulut

Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey.

Rayhanul Islam

Department of Mathematics, Pabna University of Science and Technology, Pabna-Bangladesh.

Yiasir Arafat

Department of Mathematics, Pabna University of Science and Technology, Pabna-Bangladesh.

Filiz Taşcan

Faculty of Arts and Science, Department of Mathematics and Computer, Eski¸sehir Osmangazi University, Eskisehir, Turkey.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. A. Akbar and M. A. Norhashidah, The improved F-expansion ...
  • S. Ak¸ca˘gıl and T. Aydemir, A new application of the ...
  • A. Ali, M. A. Iqbal, and S. T. Mohyud-Din, Traveling ...
  • S. M. Y. Arafat, S. M. R. Islam, and M. ...
  • M. H. Bashar and S. M. R. Islam, Exact solutions ...
  • M. H. Bashar, S. M. R. Islam, and D. Kumar, ...
  • M. H. Bashar, S. M. Y. Arafat, S. M. R. ...
  • M. Bilal, U. Younas, and J. Ren, Propagation of diverse ...
  • M. Bilal, U. Younas, and J. Ren Dynamics of exact ...
  • M. Bilal, U. Younas, and J. Ren, Dynamics of exact ...
  • J. P. Boyd, Peakons and cashoidal waves: traveling wave solutions ...
  • R. Camassa and D. Holm, An integrable shallow water equation ...
  • S. J. Chen, X. Lu, and W. X. Ma, Backlund ...
  • F. Cooper and H. Shepard, Solitons in the Camassa–Holm shallow ...
  • M. Fisher and J. Shiff, The Camassa–Holm equation: conserved quantities ...
  • Y. Gao, L. Li, and J. G. Liu, Patched peakon ...
  • S. M. R. Islam, The traveling wave solutions of the ...
  • S. M. R. Islam, Application of an enhanced (G//G)-expansion method ...
  • S. M. R. Islam, A. Akbulut, and S. M. Y. ...
  • S. Islam, K. Khan, and M. A. Akbar, Application of ...
  • M. N. Islam, M. Asaduzzaman, and M. S. Ali, Exact ...
  • S. M. R. Islam, S. M. Y. Arafat, and H. ...
  • S. M. R. Islam, K. Khan, and M. A. Akbar, ...
  • M. Kaplan and A. Akbulut, The analysis of the soliton-type ...
  • D. Kumar, C. Park, N. Tamanna, G. C. Paul, and ...
  • Y. Li, L. Tian, and Y. Wu, On the Bifurcation ...
  • X. Liu, L. Tian, and Y. Wu, Application of (G//G)-expansion ...
  • X. Lu, L. Lu, and A. Chen, New peakons and ...
  • M. H. Raddadi, M. Younis, A. R. Seadawy, S. U. ...
  • S. U. Rehman and J. Ahmad, Dispersive multiple lump solutions ...
  • S. U. Rehman, M. Bilal, and J. Ahmad, Dynamics of ...
  • A. R. Seadawy, A. Ali, S. Althobaiti, and A. Sayed, ...
  • A. R. Seadawy, S. U. Rehman, M. Younis, S. T. ...
  • A. R. Seadawy, S. U. Rehman, M. Younis, S. T. ...
  • Y. Shen, B. Tian, C. R. Zhang, H. Y. Tian, ...
  • S. F. Tian, Lie symmetry analysis, conservation laws and solitary ...
  • L. Tian and X. Song, New peaked solitary wave solutions ...
  • L. Tian, G. Xu, and Z. Liu, The concave or ...
  • G. Wang, A new (۳ + ۱)-dimensional Schr¨odinger equation: derivation, ...
  • G. Wang, Q. P. Liu, and H. Mao, The modified ...
  • A. M. Wazwaz, New compact and noncompact solutions for two ...
  • A. Yoku¸s, H. Durur, and K. A. Abro, Symbolic computation ...
  • U. Younas and J. Ren, Investigation of exact soliton solutions ...
  • U. Younas, H. Rezazadeh, J. Ren, and M. Bilal, Propagation ...
  • U. Younas, J. Ren, and M. Bilal, Dynamics of optical ...
  • U. Younas, M. Bilal, and J. Ren, Propagation of the ...
  • U. Younas, M. Bilal, and J. Ren, Diversity of exact ...
  • W. Yu, W. Liu, H. Triki, Q. Zhou, and A. ...
  • D. Zhao and Zhaqilao, Three-wave interactions in a more general ...
  • نمایش کامل مراجع