To study existence of unique solution and numerically solving for a kind of three-point boundary fractional high-order problem subject to Robin condition

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 197

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-11-2_010

تاریخ نمایه سازی: 28 فروردین 1402

چکیده مقاله:

In this paper, we prove the existence and uniqueness of the solutions for a non-integer high order boundary value problem which is subject to the Caputo fractional derivative. The boundary condition is a non-local type. Analytically, we introduce the fractional Green’s function. The main principle applied to simulate our results is the Banach contraction fixed point theorem. We deduce this paper by presenting some illustrative examples. Furthermore, it is presented a numerical based semi-analytical technique to approximate the unique solution to the desired order of precision.

کلیدواژه ها:

نویسندگان

Elyas Shivanian

Department of Applied Mathematics, Imam Khomeini International University, Qazvin, ۳۴۱۴۹-۱۶۸۱۸, Iran.

Hedayat Fatahi

Department of Mathematics, Baneh Branch, Islamic Azad University, Baneh, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. I. Abbas, Existence and uniqueness results for riemann–stieltjes integral ...
  • J. A. Adam, A mathematical model of tumor growth. ii. ...
  • J. A. Adam, A simplified mathematical model of tumor growth, ...
  • J. A. Adam and S. Maggelakis, Mathematical models of tumor ...
  • R. P. Agarwal, M. Bohner, and V. B. Shakhmurov, Linear ...
  • L. AhmadSoltani, Two-point nonlocal nonlinear fractional boundary value problem with ...
  • N. Asaithambi and J. Garner, Pointwise solution bounds for a ...
  • N. Bouteraa, M. Inc, M. Hashemi, and S. Benaicha, Study ...
  • A. C. Burton, Rate of growth of solid tumours as ...
  • M. Delkhosh and K. Parand, A new computational method based ...
  • A. Dinmohammadi, A. Razani, and E. Shivanian, Analytical solution to ...
  • A. Dinmohammadi, E. Shivanian, and A. Razani, Existence and uniqueness ...
  • R. Duggan and A. Goodman, Pointwise bounds for a nonlinear ...
  • J. R. Graef and J. Webb, Third order boundary value ...
  • U. Flesch, The distribution of heat sources in the human ...
  • B. Gray, The distribution of heat sources in the human ...
  • H. Greenspan, Models for the growth of a solid tumor ...
  • Z. Hajimohammadi, F. Baharifard, A. Ghodsi, and K. Parand, Fractional ...
  • F. Haq, K. Shah, G. Rahman, and M. Shahzad, Coupled ...
  • M. Hashemi, M. Inc, and M. Bayram, Symmetry properties and ...
  • A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, ...
  • R. Kubo, The fluctuation-dissipation theorem, Reports on progress in physics, ...
  • R. Kubo, M. Toda, and N. Hashitsume, Statistical physics II: ...
  • R. Ma, A survey on nonlocal boundary value problems, Appl. ...
  • R. L. Magin, Fractional calculus in bioengineering, Begell House Redding, ...
  • D. McElwain, A re-examination of oxygen diffusion in a spherical ...
  • N. Mehmood and N. Ahmad, Existence results for fractional order ...
  • K. Parand, A. Aghaei, M. Jani, and A. Ghodsi, Parallel ...
  • A. V. Plotnikov, T. A. Komleva, and I. V. Molchanyuk, ...
  • B. Przeradzki and R. Stanczy, Solvability of a multi-point boundary ...
  • A. Refice, M. Inc, M. S. Hashemi, and M. S. ...
  • M. Rehman and R. A. Khan, Existence and uniqueness of ...
  • E. Shivanian, Z. Hajimohammadi, F. Baharifard, K. Parand, and R. ...
  • S. Smirnov, Green’s function and existence of solutions for a ...
  • C. Vinothkumar, A. Deiveegan, J. Nieto, P. Prakash, Similarity solutions ...
  • X. Zhang and L. Liu, Positive solutions of fourth-order multi-point ...
  • نمایش کامل مراجع