Automatic Post-editing of Hierarchical Attention Networks for Improved Context-aware Neural Machine Translation
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 11، شماره: 1
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 128
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-11-1_008
تاریخ نمایه سازی: 20 فروردین 1402
چکیده مقاله:
Most of the existing neural machine translation (NMT) methods translate sentences without considering the context. It is shown that exploiting inter and intra-sentential context can improve the NMT models and yield to better overall translation quality. However, providing document-level data is costly, so properly exploiting contextual data from monolingual corpora would help translation quality. In this paper, we proposed a new method for context-aware neural machine translation (CA-NMT) using a combination of hierarchical attention networks (HAN) and automatic post-editing (APE) techniques to fix discourse phenomena when there is lack of context. HAN is used when we have a few document-level data, and APE can be trained on vast monolingual document-level data to improve results further. Experimental results show that combining HAN and APE can complement each other to mitigate contextual translation errors and further improve CA-NMT by achieving reasonable improvement over HAN (i.e., BLEU score of ۲۲.۹۱ on En-De news-commentary dataset).
کلیدواژه ها:
Context-Aware Neural Machine Translation ، Document-Level Neural Machine Translation ، Neural Machine Translation
نویسندگان
M. M. Jaziriyan
Human-Computer Interaction Lab., Faculty of Electrical and Computer Engineering Tarbiat Modares University, Tehran, Iran.
F. Ghaderi
Human-Computer Interaction Lab., Faculty of Electrical and Computer Engineering Tarbiat Modares University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :