A New Iterative Method for Solving Constrained Minimization, Variational Inequality and Split Feasibility Problems in the Framework of Banach Spaces

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 203

فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_SCMA-20-2_008

تاریخ نمایه سازی: 20 فروردین 1402

چکیده مقاله:

In this paper, we introduce a new type of modified generalized \alpha-nonexpansive mapping and establish some fixed point properties and demiclosedness principle for this class of mappings in the framework of  uniformly convex Banach spaces. We further  propose a new iterative method for approximating a common fixed point of two modified generalized \alpha-nonexpansive mappings and present some weak and strong convergence theorems for these mappings in uniformly convex Banach spaces. In addition, we apply our result to solve a  convex-constrained minimization problem, variational inequality and split feasibility problem and present some numerical experiments in infinite dimensional spaces to establish the applicability and efficiency of our proposed algorithm. The obtained results in this paper improve and extend   some related results in the literature.

کلیدواژه ها:

Modified generalized \alpha-nonexpansive mapping ، Variational inequality problem ، Fixed point ، Iterative scheme

نویسندگان

Francis Akutsah

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa.

Akindele Mebawondu

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa.

Paranjothi Pillay

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa.

Ojen Kumar Narain

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa.

Chinwe Igiri

Department of Computer Sciences and Mathematics, Mountain Top University, Prayer City, Ogun State, Nigeira.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H.A. Abass, A.A. Mebawondu and O.T. Mewomo, Some results for ...
  • M. Abass and T. Nazir, A new faster iteration process ...
  • M. Abbas, Z. Kadelburg and D.R. Sahu, Fixed point theorems ...
  • R.P. Agarwal, D. O'Regan and D.R. Sahu, Iterative construction of ...
  • V. Berinde, On the approximation of fixed points of weak ...
  • V. Berinde, Picard iteration converges faster than Mann iteration for ...
  • F.E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. ...
  • C. Byrne , Iterative oblique projection onto convex sets and ...
  • Y. Censor and T. Elfving, A multiprojection algorithm using Bregman ...
  • Y. Censor, X.A. Motova and A. Segal, Perturbed projections and ...
  • Y. Censor, T. Elfving, N. Kopt and T. Bortfeld, The ...
  • P. Cholamijak and S. Suantai, Iterative variational inequalities and fixed ...
  • M. Ertürk, F. Gürsoy, and N. Şimşek, S-iterative algorithm for ...
  • M. Ertürk, F. Gürsoy, Q. Ansari and V. Karakaya, Picard ...
  • P. Chuadchawna, A. Farajzadeh and A. Kaewcharoen, Fixed-point approximation of ...
  • M. Feng, L. Shi and R. Chen, A new three-step ...
  • F. Gianness, Vector variational inequalities and vector equilibria, Mathematical Theories, ...
  • F. Gursou and V. Karakaya, A Picard-S hybrid type iteration ...
  • F. Gursou, M. Ertürk, and M. Abbas Picard-type iterative algorithm ...
  • Math. Soc., ۱۴۹ (۱۹۷۴), pp. ۱۴۷-۱۵۰ ...
  • N. Kadioglu and I. Yildirim, Approximating fixed points of nonexpansive ...
  • V. Karakaya, K. Dogan, F. Gursoy and M. Erturk Fixed ...
  • V. Karakaya, Y. Atalan and K. Dogan, On fixed point ...
  • T. Kawasaki and W. Takahashi, A strong convergence theorem for ...
  • M.A. Krasnosel'skii, Two remarks on the method of successive approximations, ...
  • W.R. Mann, Mean value methods in iteration, Proc. Am. Math. ...
  • A.A. Mebawondu and O.T. Mewomo Fixed point results for a ...
  • A.A. Mebawondu L.O. Jolaoso, H.A. Abass, and O.K. Narain Generalized ...
  • M.A. Noor, New approximation schemes for general variational inequalities, J. ...
  • Z. Opial, Weak convergence of the sequence of the successive ...
  • O. K. Oyewole, H. A. Abass, A. A. Mebawondu, and ...
  • W. Phuengrattana, and S. Suantai, On the rate of convergence ...
  • D. R. Sahu, Application of the S-iteration process to constrained ...
  • G. Stampacchia, Formes bilinearies coercivities sur les ensembles convexes, C. ...
  • S. Suantai, Weak and strong convergence criteria of Noor iterations ...
  • B. S. Thakur, D. Thakur and M. Postolache, A new ...
  • X. L. Weng, Fixed point iteration for local strictly pseudocontractive ...
  • N. C. Wong, D. R. Sahu and J. C. Yao, ...
  • نمایش کامل مراجع