DAMAGE DETECTION OF BRIDGE STRUCTURES FROM DYNAMIC RESPONSES USING NEURAL NETWORKS

سال انتشار: 1386
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,227

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

SEE05_499

تاریخ نمایه سازی: 25 شهریور 1385

چکیده مقاله:

Recent developments in Artificial Neural Networks (ANNs) have opened up new possibilities in the domain of inverse problems. For inverse problems like structural identification of large structures (such as bridges) where in-situ measured data are expected to be imprecise and often incomplete, the ANNs hold greater promise. This study presents a method for estimating the damage intensities of joints for truss bridge structures using a back-propagation based neural network. The technique that has employed to overcome the issues associated with many unknown parameters in a large structural system is the substructural identification. The natural frequencies and mode shapes are used as input parameters to the neural network for damage identification, particularly for the case with incomplete measurements of the mode shapes. Numerical example analyses on a real truss bridge are presented to demonstrate the accuracy and efficiency of the proposed method.

نویسندگان

Khaji

Assistant Professor, Dept. of Civil Engineering, Tarbiat Modares University

Mehrjoo

MSc in Earthquake Engineering, Dept. of Civil Engineering, University Tarbiat Modares University

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Barai, S. V., and P. C. Pandey, 1997. Time-delay neural ...
  • Chan, T., X. Li, and J. Ko, 2001. Fatigue analysis ...
  • Chan, T. H., Y. Q. Ni, and J. M. Ko, ...
  • Chen, D., and W. J. Wang, 2002. Classification of wavelet ...
  • Doebling, S. W., C. R. Farrar, and M. B. Prime, ...
  • Doebling, S. W., C. R. Farrar, M. B. Prime, and ...
  • Faravelli, L., and A. A. Pisano, 1997. Damage assessment toward ...
  • Ghaboussi, J., and X. Wu, 1998. Soft computing with neural ...
  • Koh, C. G., Y. F. Chen, and C. _ Y. ...
  • Koh, C. G., B. Hong, and C. Y. Liaw, 2003. ...
  • Koh, C. G., L. M. See, and T. Balendra, 1991. ...
  • Mehrotra, K., 1997. Elements of artificial neural networks, The M.I.T ...
  • Oreta, A. W. C., and T. - A. Tanabe, 1994. ...
  • Rumelhart, D. E., and J. L. McClelland, 1986. Parallel Distributed ...
  • Tanaka, M., and H. D. Bui, 1994. Inverse Problems in ...
  • Yun, C. B., and H. - J. Lee, 1997. Substructural ...
  • نمایش کامل مراجع