Image Segmentation Based on World Cup Optimization Algorithm

سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 163

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-11-2_005

تاریخ نمایه سازی: 15 اسفند 1401

چکیده مقاله:

Image segmentation has been widely used in different applications of the image processing. It The main objective of image segmentation is to subdivide the input images to their main components. Generally, the main purpose of the segmentation is to simplify or change an image representation into something that is more meaningful and easier to analyze. In this paper, World Cup Optimization Algorithm (WCO) is proposed to classify the main components of an image (pixels) into different groups. In the experiment, the proposed method performance is measured by comparing with Otsu as a classic method and GA based and APSO based image segmentation algorithms as the heuristic based algorithms for segmentation. When compared with the other segmentation methods, the proposed WCO based method achieved good performance. The final efficiency of the proposed system is compared with the described methods. Experimental results show that the proposed method has overcome the others in the performance.

کلیدواژه ها:

image segmentation ، en ، Optimization ، World Cup Optimization Algorithm ، Otsu ، GA ، APSO

نویسندگان

Mohsen Shahrezaee

Department of Mathematics, Faculty of Science, University of Imam Hussein (AS), Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • P. Ghamisi, M. S. Couceiro, J. A. Benediktsson, and N. ...
  • N. Razmjooy, B. S. Mousavi, P. Sargolzaei, and F. Soleymani, ...
  • A. Brink, "Minimum spatial entropy threshold selection," IEE Proceedings-Vision, Image ...
  • J. N. Kapur, P. K. Sahoo, and A. K. Wong, ...
  • P. Moallem and N. Razmjooy, "Optimal threshold computing in automatic ...
  • Y. Zhang, H. Yan, X. Zou, F. Tao, and L. ...
  • N. Razmjooy, B. S. Mousavi, and F. Soleymani, "A hybrid ...
  • F. Nie, P. Zhang, J. Li, and D. Ding, "A ...
  • T. Wu, R. Hou, and Y. Chen, "Cloud Model-Based Method ...
  • O. Banimelhem and Y. A. Yahya, "Multi-thresholding image segmentation using ...
  • W.-B. Tao, J.-W. Tian, and J. Liu, "Image segmentation by ...
  • N. Otsu, "A threshold selection method from gray-level histograms," Automatica, ...
  • S. Dey, S. Bhattacharyya, and U. Maulik, "Quantum inspired genetic ...
  • S. Kumar, P. Kumar, T. K. Sharma, and M. Pant, ...
  • A. Dirami, K. Hammouche, M. Diaf, and P. Siarry, "Fast ...
  • K. C. Lin, "Fast image thresholding by finding the zero(s) ...
  • B.-G. Kim, J.-I. Shim, and D.-J. Park, "Fast image segmentation ...
  • Y. Shigemitsu, T. Ikeya, A. Yamamoto, Y. Tsuchie, M. Mishima, ...
  • N. Razmjooy, B. S. Mousavi, and F. Soleymani, "A real-time ...
  • N. Razmjooy, M. Khalilpour, and M. Ramezani, "A New Meta-Heuristic ...
  • M. R. N. Razmjooy, "Model Order Reduction based on meta-heuristic ...
  • P. P. Kumar, A. Negi, B. Deekshatulu, C. Bhagvati, and ...
  • N. Razmjooy, A. Madadi, H.-R. Alikhani, and M. Mohseni, "Comparison ...
  • نمایش کامل مراجع