SBU-WSD-Corpus: A Sense Annotated Corpus for Persian All-words Word Sense Disambiguation
محل انتشار: فصلنامه بین المللی وب پژوهی، دوره: 5، شماره: 2
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 189
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-5-2_010
تاریخ نمایه سازی: 13 اسفند 1401
چکیده مقاله:
Word Sense Disambiguation (WSD) is a long standing task in Natural Language Processing (NLP) that aims to automatically identify the most relevant meaning of the words in a given context. Developing standard WSD test collections can be mentioned as an important prerequisite for developing and evaluating different WSD systems in the language of interest. Although many WSD test collections have been developed for a variety of languages, no standard All-words WSD benchmark is available for Persian. In this paper, we address this shortage for the Persian language by introducing SBU-WSD-Corpus, as the first standard test set for the Persian All-words WSD task. SBU-WSD-Corpus is manually annotated with senses from the Persian WordNet (FarsNet) sense inventory. To this end, three annotators used SAMP (a tool for sense annotation based on FarsNet lexical graph) to perform the annotation task. SBU-WSD-Corpus consists of ۱۹ Persian documents in different domains such as Sports, Science, Arts, etc. It includes ۵۸۹۲ content words of Persian running text and ۳۳۷۱ manually sense annotated words (۲۰۷۳ nouns, ۵۶۶ verbs, ۶۱۰ adjectives, and ۱۲۲ adverbs). Providing baselines for future studies on the Persian All-words WSD task, we evaluate several WSD models on SBU-WSD-Corpus.
کلیدواژه ها:
نویسندگان
Hossein Rouhizadeh
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
Mehrnoush Shamsfard
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
Vahide Tajalli
University of Tehran, Tehran, Iran